

SportsTalk 24/7 Android SDK Documentation

Contents:

	Getting Started
	Implementing the SDK

	How to get API Key and Token

	Authentication

	SDK flow for Chat Applications

	How to download the SDK
	Download from Repository

	How to use SportsTalk SDK
	Instantiate SportsTalkManager Clients

	Using the SDK

	Implement Custom JWT

	Handling SDK Exception

	User Client
	Create or Update User

	Get User Details

	List Users

	Ban User

	Globally Purge User Content

	Mute User

	Set Shadow Ban Status

	Search User(s)

	Delete User

	Report User

	List User Notifications

	Set User Notification as Read

	Set User Notification as Read by Chat Event

	Delete User Notification

	Delete User Notification by Chat Event

	Mark All User Notifications as Read

	Chat Client
	Room Subscriptions

	Get Chat Room Event Update Cursor

	Set Chat Room Event Update Cursor

	Clear Chat Room Event Update Cursor

	Create Room

	Get Room Details

	Get Room Extended Details Batch

	Get Room Details By CustomId

	List Rooms

	Join Room (Authenticated User)

	Join Room By CustomID

	List Room Participants

	List User Subscribed Rooms

	Update Room

	Execute Chat Command (say ‘Hello, World!’)

	Execute Chat Command (Announcement by Admin)

	Execute Dance Action

	Reply to a Message (Threaded)

	Quote a Message

	React To A Message (”Like”)

	Report Message

	Execute Admin Command (*help)

	Get Updates

	List Messages By User

	List Event History

	List Events By Type

	List Events By Timestamp

	Message is Reported

	Message is Reacted To

	List Previous Events

	Get Event by ID

	Report User In Room

	Purge User Messages

	Shadow Ban User (In Room Only)

	Mute User (In Room Only)

	Bounce User

	Search Event History

	Update Chat Message

	Flag Message Event As Deleted

	Delete Event

	Delete All Events in Room

	Update Room (Close a room)

	Exit a Room

	Delete Room

	List Messages Needing Moderation

	Approve Message

	Comment Client
	Create / Update Conversation

	Get Conversation by ID

	Find Conversation by CustomID

	List Conversations

	Batch Get Conversation Details

	React To Conversation Topic (”Like”)

	Create and Publish Comment

	Reply to Comment

	List Replies

	Get Comment by ID

	List Comments

	List Replies Batch

	React To Comment (”Like”)

	Vote on Comment

	Report Comment

	Update Comment

	Flag Comment As Deleted

	Delete Comment (permanent)

	List Comments in Moderation Queue

	Approve Message in Queue

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Use this API to create experiences powered by SportsTalk and interact with those experiences.

	All API calls should be made using HTTPS.

	The API is designed to minimize the number of requests you need to make so chat applications are able to serve users very quickly especially for mobile users who need the lowest possible latency

Implementing the SDK

You can download the latest SportsTalk Android SDK from the following location:

https://gitlab.com/sportstalk247/sdk-android-kotlin

You need to register SportsTalk API with ‘Appkey’ and ‘Token’.

How to get API Key and Token

You need to visit the dashboard with the following URL:

https://dashboard.sportstalk247.com

Then click on “Application Management” link to generate the above

Authentication

	All requests that require authentication must have the x-api-token header with your application token.

	Most requests require authentication.

	If you provide authentication on a request that does not require authentication the header will be ignored and it will have no effect.

Apply Custom JWT

	The developers may want to enforce their own JWT implementation. With this, they will have to set the JWT through the SDK (See link).

	Add support for “Extra Security” token in Authorization header

SDK flow for Chat Applications

The typical flow of an application is:

	Create Room: Creates a chat room.

	List Rooms: Returns a list of available rooms. If you know the ID of the room you want there is no need to invoke List All Rooms first.

	Join Room: A user joins the room as an anonymous user or as a logged in user. Only logged in users can engage in chat activities. Anonymous users can only view whats happening in the room. You can also use custom room IDs that you provide so that you can use naming conventions to and join rooms without needing to call List All Rooms to get a room ID first.

	Get Updates: This gets the most recent events that have occurred in a room. You can use this endpoint as often as you want for polling, or you can use the Firebase API to get more bandwidth efficent push events when updates occur in the room. Calling Get Updates will prevent a logged in user from being removed from the room due to inactivity.

	Execute Chat Command: This performs a command in a chat room, like when you run a program from the command line. By default, the command is to say something in the room. However if a command starts with a special character such as / you can perform an action. See the Execute Chat Command API for more details and possible commands.

	Exit Room: When a logged in user exits the room, call this event. Otherwise the user will be removed from the room after some time without any activity.

	List Participants: Lists the logged in users in the chat room.

	Get Room Details: Gets statistics about the room such as the number of participants.

How to download the SDK

Download from Repository

The SportsTalk SDK has been published into jitpack.io.
In order to use it in your application, just do the following:

	Add the following in root build.gradle file

allprojects {
 repositories {
 // ...
 maven {
 url "https://jitpack.io"
 }
 }
}

	Add the following lines in your module build.gradle file, depending on the chosen SDK implementation(Coroutine or Rx2Java), under dependencies section:

// For SDK coroutine implementation
implementation 'com.gitlab.sportstalk247:sdk-android-kotlin:sdk-coroutine:vX.Y.Z'
// OR
// For SDK Rx2Java implementation
implementation 'com.gitlab.sportstalk247:sdk-android-kotlin:sdk-reactive-rx2:vX.Y.Z'

[image: ../_images/sdk-android-kotlin.svg]Release [https://jitpack.io/#com.gitlab.sportstalk247/sdk-android-kotlin]

Then sync again. The gradle build should now be successful.

How to use SportsTalk SDK

Instantiate SportsTalkManager Clients

This Sportstalk SDK is meant to power custom chat applications. Sportstalk does not enforce any restricitons on your UI design, but instead empowers your developers to focus on the user experience without worrying about the underlying chat behavior.

sdk-coroutine

import com.sportstalk.coroutine.SportsTalk247
// ...

sdk-reactive-rx2

import com.sportstalk.reactive.rx2.SportsTalk247
// ...

// ...

class MyFragment: Fragment() {
 // ...
 // ...

 // YOUR APP ID
 val appId = "c84cb9c852932a6b0411e75e" // This is just a sample app id
 // YOUR API TOKEN
 val apiToken = "5MGq3XbsspBEQf3kj154_OSQV-jygEKwHJyuHjuAeWHA" // This is just a sample token
 val endpoint = "http://api.custom.endpoint/v1/" // please ensure out of the box the SDKs are configured for production URL

 // Instantiate User Client
 val userClient = SportsTalk247.UserClient(
 config = ClientConfig(
 appId = appId,
 apiToken = apiToken,
 endpoint = endpoint
)
)

 // Instantiate Chat Client
 val chatClient = SportsTalk247.ChatClient(
 config = ClientConfig(
 appId = appId,
 apiToken = apiToken,
 endpoint = endpoint
)
)

 // ...

}

Using the SDK

sdk-coroutine

This Android Sportstalk SDK artifact is an Asynchronous-driven API, powered by Kotlin Coroutines [https://developer.android.com/kotlin/coroutines] to gracefully handle asynchronous operations.

Client SDK functions are declared with suspend keyword. This means that the function should be invoked from within coroutine scope. See the example below:

class MyFragment: Fragment() {

 // ...
 // ...
 // Instantiate User Client
 val userClient = SportsTalk247.UserClient(/*...*/)

 // Instantiate Chat Client
 val chatClient = SportsTalk247.ChatClient(/*...*/)

 override fun onViewCreated(view: View) {
 // ...
 // Launch thru coroutine block
 // https://developer.android.com/topic/libraries/architecture/coroutines
 lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val createdUser = withContext(Dispatchers.IO) {
 userClient.createOrUpdateUser(
 request = CreateUpdateUserRequest(
 userid = "8cb689cc-21b7-11eb-adc1-0242ac120002", // sample user ID
 handle = "sample_handle_123",
 displayname = "Test Name 123", // OPTIONAL
 pictureurl = "https://i.imgur.com/ohlx5wW.jpeg", // OPTIONAL
 profileurl = "https://i.imgur.com/ohlx5wW.jpeg" // OPTIONAL
)
)
 }

 // Resolve `createdUser` from HERE onwards(ex. update UI displaying the response data)...
 }

 }

}

sdk-reactive-rx2

This Android Sportstalk SDK artifact is a Reactive-driven API, powered by RxJava [https://github.com/ReactiveX/RxJava] to gracefully handle reactive operations.

Client SDK functions returns RxJava types. See the example below:

class MyFragment: Fragment() {

 // ...
 // ...
 val rxDisposeBag = CompositeDisposable()

 // Instantiate User Client
 val userClient = SportsTalk247.UserClient(/*...*/)

 // Instantiate Chat Client
 val chatClient = SportsTalk247.ChatClient(/*...*/)

 override fun onViewCreated(view: View) {
 // ...

 userClient.createOrUpdateUser(
 request = CreateUpdateUserRequest(
 userid = "8cb689cc-21b7-11eb-adc1-0242ac120002", // sample user ID
 handle = "sample_handle_123",
 displayname = "Test Name 123", // OPTIONAL
 pictureurl = "https://i.imgur.com/ohlx5wW.jpeg", // OPTIONAL
 profileurl = "https://i.imgur.com/ohlx5wW.jpeg" // OPTIONAL
)
)
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { createdUser ->
 // Resolve `createdUser` from HERE onwards(ex. update UI displaying the response data)...
 }
 }

}

Implement Custom JWT

sdk-coroutine

You can instantiate a JWTProvider instance and provide a token refresh action function that returns a new token. Then you just have to launch the coroutine flow by calling JWTProvider.observe() method.

// ...
// ...

// YOUR APP ID
val appId = "c84cb9c852932a6b0411e75e" // This is just a sample app id
// YOUR API TOKEN
val apiToken = "5MGq3XbsspBEQf3kj154_OSQV-jygEKwHJyuHjuAeWHA" // This is just a sample token
val endpoint = "http://api.custom.endpoint/v1/" // please ensure out of the box the SDKs are configured for production URL

val config = ClientConfig(
 appId = appId,
 apiToken = apiToken,
 endpoint = endpoint
)

// Prepare JWTProvider
val myJwtProvider = JWTProvider(
 token = "...", // Developer may immediately provide a token on init
 tokenRefreshAction = /* This is a suspend function */ {
 val newToken = doPerformFetchNewToken() // Developer may perform a long-running operation to generate a new JWT
 return@JWTProvider newToken
 }
)

// Set custom JWTProvider
SportsTalk247.setJWTProvider(
 config = config,
 provider = myJwtProvider
)

//
// In order to make refresh callback work, developer must bind through a coroutine scope by calling `observe()` function.
//
val coroutineScope = viewLifecycleOwner.lifecycleScope // If called from within a Fragment
// val coroutineScope = this.lifecycleScope // If called from within a Fragment
// val coroutineScope = CoroutineScope(context = EmptyCoroutineContext) // Developer may also provide a custom coroutine scope of choice
myJwtProvider.observe()
 .launchIn(coroutineScope)

// ...
// Instantiate Chat Client
val chatClient = SportsTalk247.ChatClient(
 config = ClientConfig(
 appId = appId,
 apiToken = apiToken,
 endpoint = endpoint
)
)

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 try {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val joinRoomResponse = withContext(Dispatchers.IO) {
 chatClient.joinRoom(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = JoinChatRoomRequest(
 userid = "023976080242ac120002" // ID of an existing user from this chatroom
)
)
 }
 } catch(err: SportsTalkException) {
 err.printStackTrace()

 //
 // Handle Unauthorized Error
 // - Attempt request refresh token
 //
 if(err.code == 401) {
 jwtProvider.refreshToken()
 // Then, prompt UI layer to perform the operation again after a short while(this is to ensure that the token gets refreshed first before retry attempt)
 }
 }

}

sdk-reactive-rx2

You can instantiate a JWTProvider instance and provide a token refresh action observable that returns a new token. Then you just have to launch the coroutine flow by calling JWTProvider.observe() method.

// ...
// ...
val rxDisposeBag = CompositeDisposable()

// Prepare JWTProvider
val myJwtProvider = JWTProvider(
 token = "...", // Developer may immediately provide a token on init
 tokenRefreshObservable = {
 return@JWTProvider Single.create<String?> { e ->
 val newToken = doPerformFetchNewToken() // Developer may perform a long-running operation to generate a new JWT
 e.onSuccess(newToken)
 }
 }
)

// Set custom JWTProvider
SportsTalk247.setJWTProvider(
 config = config,
 provider = myJwtProvider
)

//
// In order to make refresh callback work, developer must be subscribe by calling `observe()` function.
//
jwtProvider
 .observe()
 .doOnSubscribe {
 rxDisposeBag.add(it)
 }
 .subscribe()

// Instantiate User Client
val userClient = SportsTalk247.UserClient(/*...*/)

// Instantiate Chat Client
val chatClient = SportsTalk247.ChatClient(/*...*/)

override fun onViewCreated(view: View) {
//
// ...
//
chatClient.joinRoom(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = JoinChatRoomRequest(
 userid = "023976080242ac120002" // ID of an existing user from this chatroom
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .doOnError {
 val err = it as? SportsTalkException ?: return@doOnError
 err.printStackTrace()
 //
 // Handle Unauthorized Error
 // - Attempt request refresh token
 //
 if(err.code == 401) {
 jwtProvider.refreshToken()
 // Then, prompt UI layer to perform the operation again after a short while(this is to ensure that the token gets refreshed first before retry attempt)
 }
 }
 .subscribe { joinRoomResponse ->
 // Resolve `joinRoomResponse` (ex. Display prompt OR Update UI)
 }

You can also directly specify the JWT value by calling JWTProvider.setToken(newToken).
There is also a function provided to explicitly refresh token by calling JWTProvider.refreshToken(), which will trigger the provided token refresh action above to fetch a new token and will automatically add that on the SDK.

Once the User Token has been added to the SDK, the SDK will automatically append it to all requests.

Handling SDK Exception

If any client operations receive an error response, whether it be Network, Server, or Validation Error, these functions will throw an instance of SportsTalkException.

data class SportsTalkException(
 val kind: String? = null, // "api.result"
 val message: String? = null, // ex. "The specified comment was not found."
 val code: Int? = null // ex. 404,
 val data: Map<String, String?>? = null,
 val err: Throwable? = null
)

sdk-coroutine

// Under Fragment class
// Execute within coroutine scope
lifecycleScope.launch {
 val testComment = Comment(id = "0987654321",...)

 val setCommentDeletedResponse = try {
 withContext(Dispatchers.IO) {
 // These should throw Error 404 - "The specified conversation was not found and was not deleted.".
 commentClient.permanentlyDeleteComment(
 conversationid = "Non-existent-Conversation-ID",
 commentid = testComment.id!!
)
 }
 } catch(err: SportsTalkException) {
 // Resolve ERROR from HERE.
 return
 }
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()
// ...
// ...

// These should throw Error 404 - "The specified conversation was not found and was not deleted.".
commentClient.permanentlyDeleteComment(
conversationid = "Non-existent-Conversation-ID",
commentid = testComment.id!!
)
.subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.doOnError { err ->
 when(err) {
 is SportsTalkException -> {
 // You may access [SportsTalkException] fields for error prompt
 }
 else -> {
 // Catch all other error(s) encountered during the execution
 }
 }
}
.doOnSubscribe { rxDisposeBag.add(it) }
.subscribe { setCommentDeletedResponse ->
 // Resolve `setCommentDeletedResponse` (ex. Display prompt OR Update UI)
}

User Client

val userClient = SportsTalk247.UserClient(
 config = ClientConfig(
 appId = "c84cb9c852932a6b0411e75e", // This is just a sample app id
 apiToken = "5MGq3XbsspBEQf3kj154_OSQV-jygEKwHJyuHjuAeWHA", // This is just a sample token
 endpoint = "http://api.custom.endpoint/v3/" // This is just a sample API endpoint
)
)

Create or Update User

Invoke this function if you want to create a user or update an existing user.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#8cc680a6-6ce8-4af7-ab1e-e793a7f0e7d2

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val createdUser = withContext(Dispatchers.IO) {
 userClient.createOrUpdateUser(
 request = CreateUpdateUserRequest(
 userid = "023976080242ac120002",
 handle = "sample_handle_123",
 displayname = "Test Name 123", // OPTIONAL
 pictureurl = "<Image URL>", // OPTIONAL
 profileurl = "<Image URL>" // OPTIONAL
)
)
 }

 // Resolve `createdUser` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

userClient.createOrUpdateUser(
 request = CreateUpdateUserRequest(
 userid = "023976080242ac120002",
 handle = "sample_handle_123",
 displayname = "Test Name 123", // OPTIONAL
 pictureurl = "<Image URL>", // OPTIONAL
 profileurl = "<Image URL>" // OPTIONAL
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { createdUser ->
 // Resolve `createdUser` (ex. Display prompt OR Update UI)
 }

Get User Details

This will return all the information about the user.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#3323caa9-cc3d-4569-826c-69070ca51758

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val userDetails = withContext(Dispatchers.IO) {
 userClient.getUserDetails(
 userid = "023976080242ac120002"
)
 }

 // Resolve `userDetails` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

userClient.getUserDetails(
 userid = "023976080242ac120002"
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { userDetails ->
 // Resolve `userDetails` (ex. Display prompt OR Update UI)
 }

List Users

Use this function to cursor through a list of users. This function will return users in the order in which they were created, so it is safe to add new users while cursoring through the list.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#51718594-63ac-4c28-b249-8f47c3cb02b1

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val listUsers = withContext(Dispatchers.IO) {
 userClient.listUsers(
 limit = 10, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of user(s).
)
 }

 // Resolve `listUsers` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

userClient.listUsers(
 limit = 10, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of user(s).
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { listUsers ->
 // Resolve `listUsers` (ex. Display prompt OR Update UI)
 }

Ban User

This function toggles the specified user’s banned flag.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#211d5614-b251-4815-bf76-d8f6f66f97ab

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val bannedUser = withContext(Dispatchers.IO) {
 userClient.setBanStatus(
 userid = "023976080242ac120002",
 applyeffect = true, // If set to true, attempt to ban the user. If set to false, attempt to remove the ban from user
 expireseconds = 3600 // [Optional] if not specified, the ban is permanent until user is restored. If specified, then the ban will be temporarily applied for the specified number of seconds.

)
 }

 // Resolve `bannedUser` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

userClient.setBanStatus(
 userid = "023976080242ac120002",
 applyeffect = true, // If set to true, attempt to ban the user. If set to false, attempt to remove the ban from user
 expireseconds = 3600 // [Optional] if not specified, the ban is permanent until user is restored. If specified, then the ban will be temporarily applied for the specified number of seconds.
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { bannedUser ->
 // Resolve `bannedUser` (ex. Display prompt OR Update UI)
 }

Globally Purge User Content

This function will purge all chat content published by the specified user.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#c36d94e2-4fd9-4c9f-8009-f1d8ae9da6f5

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val response = withContext(Dispatchers.IO) {
 userClient.globallyPurgeUserContent(
 userid = "023976080242ac120002", // ID of the User who's content is about to be purged
 byuserid = "1234567890" // ID of the User who is about to perform the purge action(requires admin privileges)
)
 }

 // Resolve `response` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

userClient.globallyPurgeUserContent(
 userid = "023976080242ac120002", // ID of the User who's content is about to be purged
 byuserid = "1234567890" // ID of the User who is about to perform the purge action(requires admin privileges)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { response ->
 // Resolve `response` (ex. Display prompt OR Update UI)
 }

Mute User

This function toggles the specified user’s mute effect.

A muted user is in a read-only state. The muted user can join chat rooms and observe but cannot communicate. This method applies mute on the global level (applies to all talk contexts). You can optionally specify an expiration time. If the expiration time is specified, then each time the shadow banned user tries to send a message the API will check if the shadow ban has expired and will lift the ban.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#0d4c6409-18c6-41f4-9a61-7e2445c5bc0d

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val mutedUser = withContext(Dispatchers.IO) {
 userClient.muteUser(
 userId = "023976080242ac120002",
 applyeffect = true, // If set to true, user will be set to muted state. Otherwise, will be set to non-banned state.
 expireseconds = 3600 // [OPTIONAL]: Duration of mute in seconds. If specified, the mute will be lifted when this time is reached. If not specified, mute effect remains until explicitly lifted. Maximum seconds is a double byte value.
)
 }

 // Resolve `mutedUser` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

userClient.muteUser(
 userId = "023976080242ac120002",
 applyeffect = true, // If set to true, user will be set to muted state. Otherwise, will be set to non-banned state.
 expireseconds = 3600 // [OPTIONAL]: Duration of mute in seconds. If specified, the mute will be lifted when this time is reached. If not specified, mute effect remains until explicitly lifted. Maximum seconds is a double byte value.
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { mutedUser ->
 // Resolve `mutedUser` (ex. Display prompt OR Update UI)
 }

Set Shadow Ban Status

This function toggles the specified user’s shadowbanned flag.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#211a5696-59ce-4988-82c9-7c614cab3efb

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val shadowBannedUser = withContext(Dispatchers.IO) {
 userClient.setShadowBanStatus(
 userId = "023976080242ac120002",
 applyeffect = true, // If set to true, user can send messages into a chat room, however those messages are flagged as shadow banned.
 expireseconds = 3600 // [OPTIONAL]: Duration of shadowban value in seconds. If specified, the shadow ban will be lifted when this time is reached. If not specified, shadowban remains until explicitly lifted. Maximum seconds is a double byte value.

)
 }

 // Resolve `shadowBannedUser` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

userClient.setShadowBanStatus(
 userId = "023976080242ac120002",
 applyeffect = true, // If set to true, user can send messages into a chat room, however those messages are flagged as shadow banned.
 expireseconds = 3600 // [OPTIONAL]: Duration of shadowban value in seconds. If specified, the shadow ban will be lifted when this time is reached. If not specified, shadowban remains until explicitly lifted. Maximum seconds is a double byte value.

)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { shadowBannedUser ->
 // Resolve `shadowBannedUser` (ex. Display prompt OR Update UI)
 }

Search User(s)

This function searches the users in an app.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#dea07871-86bb-4c12-bef3-d7290d762a06

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 // Search by Handle
 val searchedUsersByHandle = withContext(Dispatchers.IO) {
 userClient.searchUsers(
 handle = "testhandle1",
 limit = 20, // Defaults to 200 on backend API server
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of user(s).
)
 }

 // Search by Name
 val searchedUsersByName = withContext(Dispatchers.IO) {
 userClient.searchUsers(
 name = "Josie Rizal",
 limit = 20, // Defaults to 200 on backend API server
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of user(s).
)
 }

 // Search by User ID
 val searchedUsersByUserId = withContext(Dispatchers.IO) {
 userClient.searchUsers(
 userid = "userid_georgew",
 limit = 20, // Defaults to 200 on backend API server
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of user(s).
)
 }
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

// Search by Handle
userClient.searchUsers(
 handle = "testhandle1",
 limit = 20, // Defaults to 200 on backend API server
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of user(s).
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { searchedUsersByHandle ->
 // Resolve `searchedUsersByHandle` (ex. Display prompt OR Update UI)
 }

// Search by Name
userClient.searchUsers(
 name = "Josie Rizal",
 limit = 20, // Defaults to 200 on backend API server
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of user(s).
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { searchedUsersByName ->
 // Resolve `searchedUsersByName` (ex. Display prompt OR Update UI)
 }

// Search by User ID
userClient.searchUsers(
 userid = "userid_georgew",
 limit = 20, // Defaults to 200 on backend API server
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of user(s).
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { searchedUsersByUserId ->
 // Resolve `searchedUsersByUserId` (ex. Display prompt OR Update UI)
 }

Delete User

This function will delete the specified user. All rooms with messages by that user will have the messages from this user purged in the rooms.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#ab387784-ad82-4025-bb3b-56659129279c

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val deletedUser = withContext(Dispatchers.IO) {
 userClient.deleteUser(
 userid = "023976080242ac120002"
)
 }

 // Resolve `deletedUser` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

userClient.deleteUser(
 userid = "023976080242ac120002"
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { deletedUser ->
 // Resolve `deletedUser` (ex. Display prompt OR Update UI)
 }

Report User

This function REPORTS a USER to the moderation team.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#5bfd5d93-dbfb-445c-84ff-c69f184e4277

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val reportedUser = withContext(Dispatchers.IO) {
 userClient.reportUser(
 userid = "023976080242ac120002"
)
 }

 // Resolve `reportedUser` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

userClient.reportUser(
 userid = "023976080242ac120002"
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { reportedUser ->
 // Resolve `reportedUser` (ex. Display prompt OR Update UI)
 }

List User Notifications

This function returns a list of user notifications.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#f09d36c2-de40-4866-8818-74527b2a6df5

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val listUserNotifications = withContext(Dispatchers.IO) {
 userClient.listUserNotifications(
 userid = "023976080242ac120002",
 limit = 10, // Can be any arbitrary number
 filterNotificationTypes = listOf(UserNotification.Type.CHAT_REPLY, UserNotification.Type.CHAT_QUOTE), // [OPTIONAL] List could also have either `CHAT_REPLY` or `CHAT_QUOTE` ONLY
 cursor = null,
 includeread = false, // If [true], will only return a list of user notifications whose value `isread = true`. Otherwise, returns a list of user notifications whose value `isread = false`.
 filterChatRoomId = "080001297623242ac002", // ID of an existing chat room
 filterChatRoomCustomId = null // OR you may also use an existing chat room's custom ID
)
 }

 // Resolve `listUserNotifications` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

userClient.listUserNotifications(
 userid = "023976080242ac120002",
 limit = 10, // Can be any arbitrary number
 filterNotificationTypes = listOf(UserNotification.Type.CHAT_REPLY, UserNotification.Type.CHAT_QUOTE), // [OPTIONAL] List could also have either `CHAT_REPLY` or `CHAT_QUOTE` ONLY
 cursor = null,
 includeread = false, // If [true], will only return a list of user notifications whose value `isread = true`. Otherwise, returns a list of user notifications whose value `isread = false`.
 filterChatRoomId = "080001297623242ac002", // ID of an existing chat room
 filterChatRoomCustomId = null // OR you may also use an existing chat room's custom ID
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { listUserNotifications ->
 // Resolve `listUserNotifications` (ex. Display prompt OR Update UI)
 }

Set User Notification as Read

This marks a notification as being in READ status. That will prevent the notification from being returned in a call to List User Notifications unless the default filters are overridden. Notifications that are marked as read will be automatically deleted after some time.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#073d5ec4-cef6-46cc-8b52-72083db6f310

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val updatedNotification = withContext(Dispatchers.IO) {
 userClient.setUserNotificationAsRead(
 userid = "023976080242ac120002", // The ID of user who owns the notification about to update
 notificationId = "070200623280c142a902", // The ID of notifications about to update
 read = true
)
 }

 // Resolve `updatedNotification` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

userClient.setUserNotificationAsRead(
 userid = "023976080242ac120002", // The ID of user who owns the notification about to update
 notificationId = "070200623280c142a902", // The ID of notifications about to update
 read = true
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { updatedNotification ->
 // Resolve `updatedNotification` (ex. Display prompt OR Update UI)
 }

Set User Notification as Read by Chat Event

This marks a notification as being in READ status. That will prevent the notification from being returned in a call to List User Notifications unless the default filters are overridden. Notifications that are marked as read will be automatically deleted after some time.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#073d5ec4-cef6-46cc-8b52-72083db6f310

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val updatedNotification = withContext(Dispatchers.IO) {
 userClient.setUserNotificationAsReadByChatEvent(
 userid = "023976080242ac120002", // The ID of user who owns the notification about to update
 chatEventId = "070200623280c142a902", // The ID of chatevent for which the notification was generated from, about to update
 read = true
)
 }

 // Resolve `updatedNotification` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

userClient.setUserNotificationAsReadByChatEvent(
 userid = "023976080242ac120002", // The ID of user who owns the notification about to update
 chatEventId = "070200623280c142a902", // The ID of chatevent for which the notification was generated from, about to update
 read = true
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { updatedNotification ->
 // Resolve `updatedNotification` (ex. Display prompt OR Update UI)
 }

Delete User Notification

This function immediately deletes a user notification. Unless your workflow specifically implements access to read notifications, you should delete notifications after they are consumed.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#7cbb108d-8b72-4c59-8537-fa9ea4a71364

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val deletedNotification = withContext(Dispatchers.IO) {
 userClient.deleteUserNotification(
 userid = "023976080242ac120002", // The ID of user who owns the notification about to delete
 notificationId = "070200623280c142a902" // The ID of notifications about to delete
)
 }

 // Resolve `deletedNotification` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

userClient.deleteUserNotification(
 userid = "023976080242ac120002", // The ID of user who owns the notification about to delete
 notificationId = "070200623280c142a902" // The ID of notifications about to delete
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { deletedNotification ->
 // Resolve `deletedNotification` (ex. Display prompt OR Update UI)
 }

Delete User Notification by Chat Event

This function immediately deletes a user notification. Unless your workflow specifically implements access to read notifications, you should delete notifications after they are consumed.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#073d5ec4-cef6-46cc-8b52-72083db6f310

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val deletedNotification = withContext(Dispatchers.IO) {
 userClient.deleteUserNotificationByChatEvent(
 userid = "023976080242ac120002", // The ID of user who owns the notification about to update
 chatEventId = "070200623280c142a902" // The ID of chatevent for which the notification was generated from, about to delete
)
 }

 // Resolve `deletedNotification` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

userClient.deleteUserNotificationByChatEvent(
 userid = "023976080242ac120002", // The ID of user who owns the notification about to update
 chatEventId = "070200623280c142a902" // The ID of chatevent for which the notification was generated from, about to delete
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { deletedNotification ->
 // Resolve `deletedNotification` (ex. Display prompt OR Update UI)
 }

Mark All User Notifications as Read

This marks a all notifications of the user as being in READ status. If delete is set to true, notifications are deleted instead of updated.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#e0c669ff-4722-46b0-ab3e-d1d74d9d340a

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 withContext(Dispatchers.IO) {
 userClient.markAllUserNotificationsAsRead(
 userid = "023976080242ac120002", // The ID of user who owns the notification about to update
 delete = true
)
 }
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

userClient.markAllUserNotificationsAsRead(
 userid = "023976080242ac120002", // The ID of user who owns the notification about to update
 delete = true
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe {
 // Do something afterwards...
 }

Chat Client

val chatClient = SportsTalk247.ChatClient(
 config = ClientConfig(
 appId = "c84cb9c852932a6b0411e75e", // This is just a sample app id
 apiToken = "5MGq3XbsspBEQf3kj154_OSQV-jygEKwHJyuHjuAeWHA", // This is just a sample token
 endpoint = "http://api.custom.endpoint/v3/" // This is just a sample API endpoint
)
)

Room Subscriptions

Invoke this function to see the set of ChatRoom IDs to keep track which rooms are subscribed to get event updates. Room subscriptions gets updated each time startListeningToChatUpdates(forRoomId: String) and stopListeningToChatUpdates(forRoomId: String) gets invoked.

 val roomSubscriptions: Set<String> = chatClient.roomSubscriptions()

Get Chat Room Event Update Cursor

Get current event update cursor for the specified room ID. This gets updated either each time allEventUpdates() emits a value, when joinRoom()/joinRoomByCustomId() are invoked, OR when setChatRoomEventUpdateCursor()/clearChatRoomEventUpdateCursor() are invoked.

 val currentRoomId = "<joined-room-id>"
 val currentEventUpdateCursor: String? =
 chatClient.getChatRoomEventUpdateCursor(
 forRoomId = currentRoomId
) // Could be `null` if not yet set

Set Chat Room Event Update Cursor

Allows developers to override the event updates cursor to have more control on how paging logic is implemented.

 val currentRoomId = "<joined-room-id>"
 val overrideCursor = "<a valid event update cursor>"
 chatClient.setChatRoomEventUpdateCursor(
 forRoomId = currentRoomId,
 cursor = overrideCursor
)

Clear Chat Room Event Update Cursor

Allows developers to clear the event updates cursor(when cleared, the next time allEventUpdates() performs REST API operation, it will NOT include a cursor value on the request).

 val currentRoomId = "<joined-room-id>"
 chatClient.clearChatRoomEventUpdateCursor(forRoomId = currentRoomId)

Create Room

Invoke this function to create a new chat room.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#8b2eea78-82bc-4cae-9cfa-175a00a9e15b

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val createdRoom = withContext(Dispatchers.IO) {
 chatClient.createRoom(
 request = CreateChatRoomRequest(
 name = "Test Chat Room 1",
 customid = "test-room-1",
 description = "This is a test chat room 1.",
 moderation = "post",
 enableactions = true,
 enableenterandexit = true,
 enableprofanityfilter = false,
 delaymessageseconds = 0L,
 roomisopen = true,
 maxreports = 0
)
)
 }

 // Resolve `createdRoom` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.createRoom(
 request = CreateChatRoomRequest(
 name = "Test Chat Room 1",
 customid = "test-room-1",
 description = "This is a test chat room 1.",
 moderation = "post",
 enableactions = true,
 enableenterandexit = true,
 enableprofanityfilter = false,
 delaymessageseconds = 0L,
 roomisopen = true,
 maxreports = 0
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { createdRoom ->
 // Resolve `createdRoom` (ex. Display prompt OR Update UI)
 }

Get Room Details

Invoke this function to get the details for a room.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#9bac9724-7505-4e3e-966f-08cfebbca88d

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val chatRoom = withContext(Dispatchers.IO) {
 chatClient.getRoomDetails(
 chatRoomId = "080001297623242ac002"
)
 }

 // Resolve `chatRoom` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.getRoomDetails(
 chatRoomId = "080001297623242ac002"
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { chatRoom ->
 // Resolve `chatRoom` (ex. Display prompt OR Update UI)
 }

Get Room Extended Details Batch

Invoke this function to get the extended details for a room.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#f9417096-7eac-44e1-846b-9a4782fb8279

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val chatRoomExtendedDetails = withContext(Dispatchers.IO) {
 chatClient.getRoomDetailsExtendedBatch(
 entityTypes = listOf(
 RoomDetailEntityType.ROOM,
 RoomDetailEntityType.NUM_PARTICIPANTS,
 RoomDetailEntityType.LAST_MESSAGE_TIME
), // Must have atleast 1 of the RoomDetailEntityType enum constant.
 roomIds = listOf("080001297623242ac002", "702242ac000086230129"), // Must have atleast 1 entry for roomIds or customIds combined.
 customIds = listOf("test-custom-room-id-01", "test-custom-room-id-02")
)
 }

 // Resolve `chatRoomExtendedDetails` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.getRoomDetailsExtendedBatch(
 entityTypes = listOf(
 RoomDetailEntityType.ROOM,
 RoomDetailEntityType.NUM_PARTICIPANTS,
 RoomDetailEntityType.LAST_MESSAGE_TIME
), // Must have atleast 1 of the RoomDetailEntityType enum constant.
 roomIds = listOf("080001297623242ac002", "702242ac000086230129"), // Must have atleast 1 entry for roomIds or customIds combined.
 customIds = listOf("test-custom-room-id-01", "test-custom-room-id-02")
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { chatRoomExtendedDetails ->
 // Resolve `chatRoomExtendedDetails` (ex. Display prompt OR Update UI)
 }

Get Room Details By CustomId

Invoke this function to get the details for a room, using custom ID.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#0fd07be5-f8d5-43d9-bf0f-8fb9829c172c

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val chatRoom = withContext(Dispatchers.IO) {
 chatClient.getRoomDetailsByCustomId(
 chatRoomCustomId = "custom-id-0239760802"
)
 }

 // Resolve `chatRoom` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.getRoomDetailsByCustomId(
 chatRoomCustomId = "custom-id-0239760802"
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { chatRoom ->
 // Resolve `chatRoom` (ex. Display prompt OR Update UI)
 }

List Rooms

Invoke this function to list all the available public chat rooms.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#0580f06e-a58e-447a-aa1c-6071f3cfe1cf

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val listRooms = withContext(Dispatchers.IO) {
 chatClient.listRooms(
 limit = 20, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of chat room(s).
)
 }

 // Resolve `chatRoom` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.listRooms(
 limit = 20, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of chat room(s).
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { listRooms ->
 // Resolve `listRooms` (ex. Display prompt OR Update UI)
 }

Join Room (Authenticated User)

Invoke this function to join a room.

You want your chat experience to open fast. The steps to opening a chat experience are:

	Create Room

	Create User

	Join Room (user gets permission to access events data from the room)

	Get Recent Events to display in your app

If you have already created the room (step 1) then you can perform steps 2 - 4 using join room.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#eb3f78c3-a8bb-4390-ab25-77ce7072ddda

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val joinRoomResponse = withContext(Dispatchers.IO) {
 chatClient.joinRoom(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = JoinChatRoomRequest(
 userid = "023976080242ac120002" // ID of an existing user from this chatroom
)
)
 }

 // Resolve `joinRoomResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.joinRoom(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = JoinChatRoomRequest(
 userid = "023976080242ac120002" // ID of an existing user from this chatroom
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { joinRoomResponse ->
 // Resolve `joinRoomResponse` (ex. Display prompt OR Update UI)
 }

Join Room By CustomID

Invoke this function to join a room by Custom ID. This method is the same as Join Room, except you can use your customid.

The benefit of this method is you don’t need to query to get the roomid using customid, and then make another call to join the room. This eliminates a request and enables you to bring your chat experience to your user faster.

You want your chat experience to open fast. The steps to opening a chat experience are:

	Create Room

	Create User

	Join Room (user gets permission to access events data from the room)

	Get Recent Events to display in your app

If you have already created the room (step 1) then you can perform steps 2 - 4 using join room.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#a64f2c32-6167-4639-9c32-413edded2c18

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val joinRoomResponse = withContext(Dispatchers.IO) {
 chatClient.joinRoomByCustomId(
 chatRoomCustomId = "custom-room-id-12976", // Custom ID of an existing chat room
 request = JoinChatRoomRequest(
 userid = "023976080242ac120002" // ID of an existing user from this chatroom
)
)
 }

 // Resolve `joinRoomResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.joinRoomByCustomId(
 chatRoomCustomId = "custom-room-id-12976", // Custom ID of an existing chat room
 request = JoinChatRoomRequest(
 userid = "023976080242ac120002" // ID of an existing user from this chatroom
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { joinRoomResponse ->
 // Resolve `joinRoomResponse` (ex. Display prompt OR Update UI)
 }

List Room Participants

Invoke this function to list all the participants in the specified room.

Use this method to cursor through the people who have subscribe to the room.

To cursor through the results if there are many participants, invoke this function many times. Each result will return a cursor value and you can pass that value to the next invokation to get the next page of results. The result set will also include a next field with the full URL to get the next page, so you can just keep reading that and requesting that URL until you reach the end. When you reach the end, no more results will be returned or the result set will be less than maxresults and the next field will be empty.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#1b1b82a9-2b2f-4785-993b-baed6e7eba7b

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val listRoomParticipants = withContext(Dispatchers.IO) {
 chatClient.listRoomParticipants(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 limit = 20, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of chatroom participant(s).
)
 }

 // Resolve `listRoomParticipants` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.listRoomParticipants(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 limit = 20, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of chatroom participant(s).
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { listRoomParticipants ->
 // Resolve `listRoomParticipants` (ex. Display prompt OR Update UI)
 }

List User Subscribed Rooms

Invoke this function to list the rooms the user is subscribed to .

Use this method to cursor through all the rooms the user is subscribed to.

To cursor through the results if there are many participants, invoke this function many times. Each result will return a cursor value and you can pass that value to the next invokation to get the next page of results. The result set will also include a next field with the full URL to get the next page, so you can just keep reading that and requesting that URL until you reach the end. When you reach the end, no more results will be returned or the result set will be less than maxresults and the next field will be empty.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#a0c20768-bacd-4565-a628-e884ff3cc82a

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val listUserSubscribedRooms = withContext(Dispatchers.IO) {
 chatClient.listUserSubscribedRooms(
 userid = "023976080242ac120002" // ID of an existing user
 limit = 20, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of chatroom participant(s).
)
 }

 // Resolve `listUserSubscribedRooms` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.listUserSubscribedRooms(
 userid = "023976080242ac120002" // ID of an existing user
 limit = 20, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of chatroom participant(s).
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { listUserSubscribedRooms ->
 // Resolve `listUserSubscribedRooms` (ex. Display prompt OR Update UI)
 }

Update Room

Invoke this function to update an existing room.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#96ef3138-4820-459b-b400-e9f25d5ddb00

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val updatedRoom = withContext(Dispatchers.IO) {
 chatClient.updateRoom(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = UpdateChatRoomRequest(
 name = "${testData.name!!}-updated",
 customid = "${testData.customid}-updated(${System.currentTimeMillis()})",
 description = "${testData.description}-updated",
 enableactions = !testData.enableactions!!,
 enableenterandexit = !testData.enableenterandexit!!,
 maxreports = 30L
)
)
 }

 // Resolve `updatedRoom` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.updateRoom(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = UpdateChatRoomRequest(
 name = "${testData.name!!}-updated",
 customid = "${testData.customid}-updated(${System.currentTimeMillis()})",
 description = "${testData.description}-updated",
 enableactions = !testData.enableactions!!,
 enableenterandexit = !testData.enableenterandexit!!,
 maxreports = 30L
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { updatedRoom ->
 // Resolve `updatedRoom` (ex. Display prompt OR Update UI)
 }

Execute Chat Command (say ‘Hello, World!’)

Invoke this function to execute a command in a chat room.

Precondition: The user must JOIN the room first with a call to Join Room. Otherwise you’ll receive HTTP Status Code PreconditionFailed (412)

SENDING A MESSAGE

	Send any text that doesn’t start with a reserved symbol to perform a SAY command.

	Use this function to REPLY to existing messages

	Use this function to perform ACTION commands

	Use this function to perform ADMIN commands

example:

ExecuteChatCommandRequest(
 command = "These commands both do the same thing, which is send the message 'Hello World' to the room. SAY Hello, World Hello, World",
 //
)

ACTION COMMANDS

	Action commands start with the / character

example:

// Assuming current user's handle is "@MikeHandle05"
ExecuteChatCommandRequest(
 command = "/dance nicole",
 //
)

// User sees: "You dance with Nicole"
// Nicole sees: "@MikeHandle05 dances with you"
// Everyone else sees: "@MikeHandle05 dances with Nicole"

This requires that the action command dance is on the approved list of commands and Nicole is the handle of a participant in the room, and that actions are allowed in the room.

ADMIN COMMANDS

	These commands start with the * character

example:

// This bans the user from the entire chat experience (all rooms).
ExecuteChatCommandRequest(
 command = "*ban",
 //
)

// This restores the user to the chat experience (all rooms).
ExecuteChatCommandRequest(
 command = "*restore",
 //
)

// This deletes all messages from the specified user.
ExecuteChatCommandRequest(
 command = "*purge",
 //
)

// This deletes all messages in this room.
// Assuming ADMIN password "testpassword123"
ExecuteChatCommandRequest(
 command = "*deleteallevents testpassword123",
 //
)

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#c81e90fc-1a54-40bb-a75b-2fc935c12b59

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val executeChatCmdResponse = withContext(Dispatchers.IO) {
 chatClient.executeChatCommand(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = ExecuteChatCommandRequest(
 command = "Hello World!",
 userid = "023976080242ac120002" // ID of an existing user from this chatroom
)
)
 }

 // Resolve `executeChatCmdResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.executeChatCommand(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = ExecuteChatCommandRequest(
 command = "Hello World!",
 userid = "023976080242ac120002" // ID of an existing user from this chatroom
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { executeChatCmdResponse ->
 // Resolve `executeChatCmdResponse` (ex. Display prompt OR Update UI)
 }

Execute Chat Command (Announcement by Admin)

Invoke this function to execute a command in a chat room.

Precondition: The user must JOIN the room first with a call to Join Room. Otherwise you’ll receive HTTP Status Code PreconditionFailed (412)

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#45c88ff5-4006-491a-b4d3-5f2ad542fa09

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val executeChatCmdResponse = withContext(Dispatchers.IO) {
 chatClient.executeChatCommand(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = ExecuteChatCommandRequest(
 command = "This is a test annoncement!",
 userid = "023976080242ac120002", // ID of an existing user from this chatroom
 eventtype = "announcement"
)
)
 }

 // Resolve `executeChatCmdResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.executeChatCommand(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = ExecuteChatCommandRequest(
 command = "This is a test annoncement!",
 userid = "023976080242ac120002", // ID of an existing user from this chatroom
 eventtype = "announcement"
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { executeChatCmdResponse ->
 // Resolve `executeChatCmdResponse` (ex. Display prompt OR Update UI)
 }

Execute Dance Action

Invoke this function to execute a command High five or Dance Action in a chat room.

Precondition: The user must JOIN the room first with a call to Join Room. Otherwise you’ll receive HTTP Status Code PreconditionFailed (412)

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#45c88ff5-4006-491a-b4d3-5f2ad542fa09

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val executeChatCmdResponse = withContext(Dispatchers.IO) {
 chatClient.executeChatCommand(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = ExecuteChatCommandRequest(
 command = "/high5 georgew",
 userid = "023976080242ac120002", // ID of an existing user from this chatroom
)
)
 }

 // Resolve `executeChatCmdResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.executeChatCommand(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = ExecuteChatCommandRequest(
 command = "/high5 georgew",
 userid = "023976080242ac120002", // ID of an existing user from this chatroom
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { executeChatCmdResponse ->
 // Resolve `executeChatCmdResponse` (ex. Display prompt OR Update UI)
 }

Reply to a Message (Threaded)

Invoke this function to create a threaded reply to another message event.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#d54ce72a-1a8a-4230-b950-0d1b345c20c6

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val sendThreadedReplyResponse = withContext(Dispatchers.IO) {
 chatClient.sendThreadedReply(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 replyTo = "0976280012ac00023242", // ID of an existing event from this chatroom, which you intend to reply to
 request = SendThreadedReplyRequest(
 body = "This is Jessy, replying to your greetings yow!!!",
 userid = "023976080242ac120002", // ID of an existing user from this chatroom
)
)
 }

 // Resolve `sendThreadedReplyResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.sendThreadedReply(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 replyTo = "0976280012ac00023242", // ID of an existing event from this chatroom, which you intend to reply to
 request = SendThreadedReplyRequest(
 body = "This is Jessy, replying to your greetings yow!!!",
 userid = "023976080242ac120002", // ID of an existing user from this chatroom
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { sendThreadedReplyResponse ->
 // Resolve `sendThreadedReplyResponse` (ex. Display prompt OR Update UI)
 }

Quote a Message

Invoke this function to quote an existing message and republishes it with a new message.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#c463cddd-c247-4e7c-8280-2d4880813149

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val sendQuotedReplyResponse = withContext(Dispatchers.IO) {
 chatClient.sendQuotedReply(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 replyTo = "0976280012ac00023242", // ID of an existing event from this chatroom, which you intend to reply to
 request = SendQuotedReplyRequest(
 body = "This is Jessy, quoting your greetings yow!!!",
 userid = "023976080242ac120002", // ID of an existing user from this chatroom
)
)
 }

 // Resolve `sendQuotedReplyResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.sendQuotedReply(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 replyTo = "0976280012ac00023242", // ID of an existing event from this chatroom, which you intend to reply to
 request = SendQuotedReplyRequest(
 body = "This is Jessy, quoting your greetings yow!!!",
 userid = "023976080242ac120002", // ID of an existing user from this chatroom
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { sendQuotedReplyResponse ->
 // Resolve `sendQuotedReplyResponse` (ex. Display prompt OR Update UI)
 }

React To A Message (”Like”)

Invoke this function to add or remove a reaction to an existing event.

After this completes, a new event appears in the stream representing the reaction. The new event will have an updated version of the event in the replyto field, which you can use to update your UI.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#977044d8-9133-4185-ac1f-4d96a40aa60b

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val reactToAMsgResponse = withContext(Dispatchers.IO) {
 chatClient.reactToEvent(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 eventId = "0976280012ac00023242", // ID of an existing event from this chatroom, which you intend to reply to
 request = ReactToAMessageRequest(
 userid = "023976080242ac120002", // ID of an existing user from this chatroom
 reaction = "like",
 reacted = true
)
)
 }

 // Resolve `reactToAMsgResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.reactToEvent(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 eventId = "0976280012ac00023242", // ID of an existing event from this chatroom, which you intend to reply to
 request = ReactToAMessageRequest(
 userid = "023976080242ac120002", // ID of an existing user from this chatroom
 reaction = "like",
 reacted = true
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { reactToAMsgResponse ->
 // Resolve `reactToAMsgResponse` (ex. Display prompt OR Update UI)
 }

Report Message

Invoke this function to REPORT a message to the moderation team.

After this completes, a new event appears in the stream representing the reaction. The new event will have an updated version of the event in the replyto field, which you can use to update your UI.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#2b231a1e-a12b-4a2e-b7f3-7104bec91a0a

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val reportMsgResponse = withContext(Dispatchers.IO) {
 chatClient.reportMessage(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 eventId = "0976280012ac00023242", // ID of an existing event from this chatroom, which you intend to reply to
 request = ReportMessageRequest(
 reporttype = "abuse",
 userid = "023976080242ac120002" // ID of an existing user from this chatroom
)
)
 }

 // Resolve `reportMsgResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.reportMessage(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 eventId = "0976280012ac00023242", // ID of an existing event from this chatroom, which you intend to reply to
 request = ReportMessageRequest(
 reporttype = "abuse",
 userid = "023976080242ac120002" // ID of an existing user from this chatroom
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { reportMsgResponse ->
 // Resolve `reportMsgResponse` (ex. Display prompt OR Update UI)
 }

Execute Admin Command (*help)

Invoke this function to execute help command in a chat room.

Precondition: The user must JOIN the room first with a call to Join Room. Otherwise you’ll receive HTTP Status Code PreconditionFailed (412)

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#08b0ab21-0e9f-40a3-bdfe-f228196fea03

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val executeChatCmdResponse = withContext(Dispatchers.IO) {
 chatClient.executeChatCommand(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = ExecuteChatCommandRequest(
 command = "*help*",
 userid = "023976080242ac120002", // ID of an existing user from this chatroom
)
)
 }

 // Resolve `executeChatCmdResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.executeChatCommand(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = ExecuteChatCommandRequest(
 command = "*help*",
 userid = "023976080242ac120002", // ID of an existing user from this chatroom
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { executeChatCmdResponse ->
 // Resolve `executeChatCmdResponse` (ex. Display prompt OR Update UI)
 }

Get Updates

Invoke this function to get the recent updates to a room.

	You can use this function to poll the room to get the recent events in the room. The recommended poll interval is 500ms. Each event has an ID and a timestamp. To detect new messages using polling, call this function and then process items with a newer timestamp than the most recent one you have already processed.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#be93067d-562e-41b2-97b2-b2bf177f1282

If smoothEventUpdates is set to true, smooth event updates feature is applied. Smooth event updates feature emits event updates with space delay(denoted by eventSpacingMs) in between each item if item count is less than maxEventBufferSize to avoid overwhelming the receiver from consuming a list of event updates in small quantity. However, if item count exceeds maxEventBufferSize, all items are emitted as-is without space delay in between.

Below is a code sample on how to use this SDK feature:

sdk-coroutine

import com.sportstalk.coroutine.api.polling.allEventUpdates
// ...

// Under Fragment class
// ...
// User must first Join Chat Room
// Now that the test user has joined the room, setup reactive subscription to event updates
// Below returns a Flow<List<ChatEvent>>
lifecycleScope.launch {
 chatClient.allEventUpdates(
 chatRoomId = testChatRoom.id!!,
 frequency = 1000L /* Polling Frequency. Defaults to 500 milliseconds if not explicitly provided */,
 limit: Int? = null, // (optional) Number of events to return for each poll. Default is 100, maximum is 500.
 /**
 * If [true], render events with some spacing.
 * - However, if we have a massive batch, we want to catch up, so we do not put spacing and just jump ahead.
 */
 smoothEventUpdates: Boolean = true, // If not specified, defaults to [true]
 /**
 * (optional, 200ms by default) This only applies if `smoothEventUpdates` = true.
 * This defines how long to pause before emitting the next event in a batch.
 */
 eventSpacingMs: Long = 200L, // If not specified or if negative number was provided, defaults to 200ms
 /**
 * (optional, 30 by default) This only applies if `smoothEventUpdates` = true.
 * Holds the size of the event buffer we will accept before displaying everything in order to catch up.
 */
 maxEventBufferSize: Int = 30,
 /*
 * The following are placeholder/convenience functions should the developers want to implement it
 * in a callback-oriented way. (Invoked as subscription's side-effect. In coroutine flow, these are invoked via .onEach { ... })
 */
 onChatEvent = { event: ChatEvent -> /* Handle all other eventtype */ }, // OPTIONAL
 onGoalEvent = { goalEvent: ChatEvent -> /* Handle eventtype == "goal" */ }, // OPTIONAL
 onAdEvent = { adEvent: ChatEvent -> /* Handle eventtype == "advertisement" */ }, // OPTIONAL
 onReply = { replyEvent: ChatEvent -> /* Handle eventtype == "reply" */ }, // OPTIONAL
 onReaction = { reactionEvent: ChatEvent -> /* Handle eventtype == "reaction" */ }, // OPTIONAL
 onPurgeEvent = { purgeEvent: ChatEvent -> /* Handle eventtype == "purge" */ } // OPTIONAL
)
 .distinctUntilChanged()
 .onEach { events ->
 // Alternatively, the developer can opt to consume the events in here...
 // NOTE:: ONLY choose 1 approach to avoid handling it twice.
 // Iterate each event item(s)
 events.forEach { chatEvent ->
 when(chatEvent.eventtype) {
 EventType.GOAL -> { /* Handle goal event types */ }
 EventType.ADVERTISEMENT -> { /* Handle advertisements event types */ }
 // ...
 // ...
 }
 }
 }
 .launchIn(lifecycleScope /* Already provided by androidx.Fragment */)

 // Then, perform start listening to event updates
 chatClient.startListeningToChatUpdates(
 forRoomId = testChatRoom.id!!
)

 // At some point in time, the developer might want to explicitly stop listening to event updates
 chatClient.stopListeningToChatUpdates(
 forRoomId = testChatRoom.id!!
)
}

sdk-coroutine (LiveData)

/**
* ALTERNATIVELY, `sdk-coroutine` artifact also provides a
* similar function that returns a LiveData.
*/

import com.sportstalk.coroutine.api.polling.livedata.allEventUpdates
// ...

// Under Fragment class
// ...
// User must first Join Chat Room
// Now that the test user has joined the room, setup reactive subscription to event updates
// Below returns a LiveData<List<ChatEvent>>
chatClient.allEventUpdates(
 chatRoomId = testChatRoom.id!!,
 lifecycleOwner = viewLifecycleOwner /* Already provided by androidx.Fragment */,
 frequency = 1000L /* Polling Frequency. Defaults to 500 milliseconds if not explicitly provided */,
 limit: Int? = null, // (optional) Number of events to return for each poll. Default is 100, maximum is 500.
 /**
 * If [true], render events with some spacing.
 * - However, if we have a massive batch, we want to catch up, so we do not put spacing and just jump ahead.
 */
 smoothEventUpdates: Boolean = true, // If not specified, defaults to [true]
 /**
 * (optional, 200ms by default) This only applies if `smoothEventUpdates` = true.
 * This defines how long to pause before emitting the next event in a batch.
 */
 eventSpacingMs: Long = 200L, // If not specified or if negative number was provided, defaults to 200ms
 /**
 * (optional, 30 by default) This only applies if `smoothEventUpdates` = true.
 * Holds the size of the event buffer we will accept before displaying everything in order to catch up.
 */
 maxEventBufferSize: Int = 30,
 /*
 * The following are placeholder/convenience functions should the developers want to implement it
 * in a callback-oriented way. (Invoked as subscription's side-effect.)
 */
 onChatEvent = { event: ChatEvent -> /* Handle all other eventtype */ }, // OPTIONAL
 onGoalEvent = { goalEvent: ChatEvent -> /* Handle eventtype == "goal" */ }, // OPTIONAL
 onAdEvent = { adEvent: ChatEvent -> /* Handle eventtype == "advertisement" */ }, // OPTIONAL
 onReply = { replyEvent: ChatEvent -> /* Handle eventtype == "reply" */ }, // OPTIONAL
 onReaction = { reactionEvent: ChatEvent -> /* Handle eventtype == "reaction" */ }, // OPTIONAL
 onPurgeEvent = { purgeEvent: ChatEvent -> /* Handle eventtype == "purge" */ } // OPTIONAL
)
.distinctUntilChanged() // livedata-ktx
.observe(viewLifeCycleOwner, Observer { events ->
 // Alternatively, the developer can opt to consume the events in here...
 // NOTE:: ONLY choose 1 approach to avoid handling it twice.
 // Iterate each event item(s)
 events.forEach { chatEvent ->
 when(chatEvent.eventtype) {
 EventType.GOAL -> { /* Handle goal event types */ }
 EventType.ADVERTISEMENT -> { /* Handle advertisements event types */ }
 // ...
 // ...
 }
 }
})

// Then, perform start listening to event updates
chatClient.startListeningToChatUpdates(
 forRoomId = testChatRoom.id!!
)

// At some point in time, the developer might want to explicitly stop listening to event updates
chatClient.stopListeningToChatUpdates(
 forRoomId = testChatRoom.id!!
)

sdk-reactive-rx2

import com.sportstalk.reactive.rx2.api.polling.allEventUpdates
// ...

// Under Fragment class
// ...

val rxDisposeBag = CompositeDisposable()

// User must first Join Chat Room
// Now that the test user has joined the room, setup reactive subscription to event updates
// Below returns a Flowable<List<ChatEvent>>
chatClient.allEventUpdates(
 chatRoomId = testChatRoom.id!!,
 lifecycleOwner = viewLifecycleOwner /* Already provided by androidx.Fragment */,
 frequency = 1000L /* Polling Frequency. Defaults to 500 milliseconds if not explicitly provided */,
 limit: Int? = null, // (optional) Number of events to return for each poll. Default is 100, maximum is 500.
 /**
 * If [true], render events with some spacing.
 * - However, if we have a massive batch, we want to catch up, so we do not put spacing and just jump ahead.
 */
 smoothEventUpdates: Boolean = true, // If not specified, defaults to [true]
 /**
 * (optional, 200ms by default) This only applies if `smoothEventUpdates` = true.
 * This defines how long to pause before emitting the next event in a batch.
 */
 eventSpacingMs: Long = 200L, // If not specified or if negative number was provided, defaults to 200ms
 /**
 * (optional, 30 by default) This only applies if `smoothEventUpdates` = true.
 * Holds the size of the event buffer we will accept before displaying everything in order to catch up.
 */
 maxEventBufferSize: Int = 30,
 /*
 * The following are placeholder/convenience functions should the developers want to implement it
 * in a callback-oriented way. (Invoked as subscription's side-effect. In RxJava, these are invoked via .doOnNext { ... }.)
 */
 onChatEvent = { event: ChatEvent -> /* Handle all other eventtype */ }, // OPTIONAL
 onGoalEvent = { goalEvent: ChatEvent -> /* Handle eventtype == "goal" */ }, // OPTIONAL
 onAdEvent = { adEvent: ChatEvent -> /* Handle eventtype == "advertisement" */ }, // OPTIONAL
 onReply = { replyEvent: ChatEvent -> /* Handle eventtype == "reply" */ }, // OPTIONAL
 onReaction = { reactionEvent: ChatEvent -> /* Handle eventtype == "reaction" */ }, // OPTIONAL
 onPurgeEvent = { purgeEvent: ChatEvent -> /* Handle eventtype == "purge" */ } // OPTIONAL
)
.distinctUntilChanged()
.subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.subscribe { events ->
 // Alternatively, the developer can opt to consume the events in here...
 // NOTE:: ONLY choose 1 approach to avoid handling it twice.
 // Iterate each event item(s)
 events.forEach { chatEvent ->
 when(chatEvent.eventtype) {
 EventType.GOAL -> { /* Handle goal event types */ }
 EventType.ADVERTISEMENT -> { /* Handle advertisements event types */ }
 // ...
 // ...
 }
 }
}
.also { rxDisposeBag.add(it) }

// Then, perform start listening to event updates
chatClient.startListeningToChatUpdates(
 forRoomId = testChatRoom.id!!
)

// At some point in time, the developer might want to explicitly stop listening to event updates
chatClient.stopListeningToChatUpdates(
 forRoomId = testChatRoom.id!!
)

List Messages By User

Invoke this function to get a list of users messages.

This method requires authentication.

The purpose of this method is to get a list of messages or comments by a user, with count of replies and reaction data. This way, you can easily make a screen in your application that shows the user a list of their comment contributions and how people reacted to it.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#0ec044c6-a3c0-478f-985a-156f6f5b660a

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val listUserMessages = withContext(Dispatchers.IO) {
 chatClient.listMessagesByUser(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 userid = "023976080242ac120002", // ID of an existing user from this chatroom
 limit = 20, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of user message(s).
)
 }

 // Resolve `listUserMessages` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.listMessagesByUser(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 userid = "023976080242ac120002", // ID of an existing user from this chatroom
 limit = 20, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of user message(s).
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { listUserMessages ->
 // Resolve `listUserMessages` (ex. Display prompt OR Update UI)
 }

List Event History

Invoke this function to list events history.

	This method enables you to download all of the events from a room in large batches. It should only be used if doing a data export.

	This method returns a list of events sorted from oldest to newest.

	This method returns all events, even those in the inactive state.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#b8ca9766-ab07-4c8c-8e25-002a24a8feaa

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val listEventsHistory = withContext(Dispatchers.IO) {
 chatClient.listEventsHistory(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 limit = 20, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of events.
)
 }

 // Resolve `listEventsHistory` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.listEventsHistory(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 limit = 20, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of events.
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { listEventsHistory ->
 // Resolve `listEventsHistory` (ex. Display prompt OR Update UI)
 }

List Events By Type

Invoke this function to list events by type.

	This method enables you to retrieve a small list of recent events by type. This is useful for things like fetching a list of recent announcements or custom event types without the need to scroll through the entire chat history.

	This method returns a list of events sorted from newest to oldest.

	This method returns only active events.

	If you specify eventtype = customtype, you must pass the customtype value, a string of your choosing for your custom type.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#68a36454-bf36-41e0-b8ef-6bcb2a13dd36

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val listEventsByType = withContext(Dispatchers.IO) {
 chatClient.listEventsByType(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 eventType = EventType.ANNOUNCEMENT, // "announcement"
 limit = 20, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of events.
)
 }

 // Resolve `listEventsByType` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.listEventsByType(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 eventType = EventType.ANNOUNCEMENT, // "announcement"
 limit = 20, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of events.
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { listEventsByType ->
 // Resolve `listEventsByType` (ex. Display prompt OR Update UI)
 }

List Events By Timestamp

Invoke this function to list events by timestamp.

	This method enables you to retrieve an event using a timestamp.

	You can optionally retrieve a small number of displayable events before and after the message at the requested timestamp.

	This method returns a list of events sorted from oldest to newest.

	This method returns only active events.

	The timestamp is a high resolution timestamp accurate to the thousanth of a second. It is possible, but very unlikely, for two messages to have the same timestamp.

	The method returns “timestampolder”. This can be passed as the timestamp value when calling functions like this which accept a timestamp to retrieve data.

	The method returns “timestampnewer”. This can be passed as the timestamp value when calling this function again.

	The method returns “cursorpolder”. This can be passed as the cursor to ethods that accept an events-sorted-by-time cursor.

	The method returns “cursornewer”. This can be passed as the cursor to methods that accept an events-sorted-by-time cursor.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#fe87c58e-2fd3-4e59-80fa-07ffaed94ee0

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val listEventsByTimestamp = withContext(Dispatchers.IO) {
 chatClient.listEventsByTimestamp(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 timestamp = 637464818548698844, // Timestamp criteria
 limitolder = 5,
 limitolder = 5
)
 }

 // Resolve `listEventsByTimestamp` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.listEventsByTimestamp(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 timestamp = 637464818548698844, // Timestamp criteria
 limitolder = 5,
 limitolder = 5
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { listEventsByTimestamp ->
 // Resolve `listEventsByTimestamp` (ex. Display prompt OR Update UI)
 }

Message is Reported

Invoke this function to check if the current user has already reported a message.

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // NO NEED to switch coroutine context as this operation does NOT perform network call
 val messageIsReported = chatClient.messageIsReported(
 eventId = "7620812242ac09300002" // ID of an existing event from the chat room
 userid = "023976080242ac120002", // ID of an existing user from the chat room
)

 // Resolve `messageIsReported` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

// This function just returns Boolean value rather than an RxJava type since this operation does NOT perform network call
val messageIsReported = chatClient.messageIsReported(
 eventId = "7620812242ac09300002" // ID of an existing event from the chat room
 userid = "023976080242ac120002", // ID of an existing user from the chat room
)

// Resolve `messageIsReported` (ex. Display prompt OR Update UI)

Message is Reacted To

Invoke this function to check if a message was reacted to by the current user.

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // NO NEED to switch coroutine context as this operation does NOT perform network call
 val messageIsReactedTo = chatClient.messageIsReactedTo(
 eventId = "7620812242ac09300002" // ID of an existing event from the chat room
 userid = "023976080242ac120002", // ID of an existing user from the chat room
 reaction = "like" // One of the ReactionType string constants
)

 // Resolve `messageIsReactedTo` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

// This function just returns Boolean value rather than an RxJava type since this operation does NOT perform network call
val messageIsReactedTo = chatClient.messageIsReactedTo(
 eventId = "7620812242ac09300002" // ID of an existing event from the chat room
 userid = "023976080242ac120002", // ID of an existing user from the chat room
 reaction = "like" // One of the ReactionType string constants
)

// Resolve `messageIsReactedTo` (ex. Display prompt OR Update UI)

List Previous Events

Invoke this function to list previous events.

	This method allows you to go back in time to “scroll” in reverse through past messages. The typical use case for this method is to power the scroll-back feature of a chat window allowing the user to look at recent messages that have scrolled out of view. It’s intended use is to retrieve small batches of historical events as the user is scrolling up.

	This method returns a list of events sorted from newest to oldest.

	This method excludes events that are not in the active state (for example if they are removed by a moderator)

	This method excludes non-displayable events (reaction, replace, remove, purge)

	This method will not return events that were emitted and then deleted before this method was called

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#f750f610-5db8-46ca-b9f7-a800c2e9c94a

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val listPreviousEvents = withContext(Dispatchers.IO) {
 chatClient.listPreviousEvents(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 limit = 20, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of events.
)
 }

 // Resolve `listPreviousEvents` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.listPreviousEvents(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 limit = 20, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of events.
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { listPreviousEvents ->
 // Resolve `listPreviousEvents` (ex. Display prompt OR Update UI)
 }

Get Event by ID

Invoke this function to get a chat event by ID.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#04f8f563-eacf-4a64-9f00-b3d6c050a2fa

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val chatEventResponse = withContext(Dispatchers.IO) {
 chatClient.getEventById(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 eventId = "7620812242ac09300002" // ID of an existing event from the chat room
)
 }

 // Resolve `chatEventResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.getEventById(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 eventId = "7620812242ac09300002" // ID of an existing event from the chat room
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { chatEventResponse ->
 // Resolve `chatEventResponse` (ex. Display prompt OR Update UI)
 }

Report User In Room

Invoke this function to enable users to report other users who exhibit abusive behaviors. It enables users to silence another user when a moderator is not present. If the user receives too many reports in a trailing 24 hour period, the user will become flagged at the room level.

This API moderates users on the ROOM LEVEL. If a There is an API method that enable reporting users at the global user level which impacts all rooms. This API impacts only the experience for the specified userid within the specified room.

This API will return an error (see responses below) if user reporting is not enabled for your application in the application settings by setting User Reports limit to a value > 0.

A user who is flagged will have the shadowban effect applied.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#94fdf593-06b6-41a2-80f6-79b8eb989b8b

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val reportUserInRoomResponse = withContext(Dispatchers.IO) {
 chatClient.reportUserInRoom(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = ReportUserInRoomRequest(
 userid = "023976080242ac120002", // ID of an existing user from the chat room
 reporttype = ReportType.ABUSE // either ReportType.ABUSE("abuse") or ReportType.SPAM("spam")
)
)
 }

 // Resolve `reportUserInRoomResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.reportUserInRoom(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = ReportUserInRoomRequest(
 userid = "023976080242ac120002", // ID of an existing user from the chat room
 reporttype = ReportType.ABUSE // either ReportType.ABUSE("abuse") or ReportType.SPAM("spam")
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { reportUserInRoomResponse ->
 // Resolve `reportUserInRoomResponse` (ex. Display prompt OR Update UI)
 }

Purge User Messages

Invoke this function to execute a command in a chat room to purge all messages for a user.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#04ffee45-a3e6-49b8-8968-46b219020b66

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val purgeCmdResponse = withContext(Dispatchers.IO) {
 chatClient.executeChatCommand(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 // Assuming ADMIN password "testpassword123"
 // Assuming user "@nicoleWd" exists
 request = ExecuteChatCommandRequest(
 command = "*purge testpassword123 nicoleWd",
 userid = "023976080242ac120002" // ID of an existing user "@nicoleWd" from this chatroom
)
)
 }

 // Resolve `purgeCmdResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.executeChatCommand(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 // Assuming ADMIN password "testpassword123"
 // Assuming user "@nicoleWd" exists
 request = ExecuteChatCommandRequest(
 command = "*purge testpassword123 nicoleWd",
 userid = "023976080242ac120002" // ID of an existing user "@nicoleWd" from this chatroom
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { chatEventResponse ->
 // Resolve `chatEventResponse` (ex. Display prompt OR Update UI)
 }

Shadow Ban User (In Room Only)

Invoke this function to toggle the user’s shadow banned flag from within the specified Chatroom.

There is a user level shadow ban (global) and local room level shadow ban.

A Shadow Banned user can send messages into a chat room, however those messages are flagged as shadow banned. This enables the application to show those messags only to the shadow banned user, so that that person may not know they were shadow banned. This method shadow bans the user on the global level (or you can use this method to lift the ban). You can optionally specify an expiration time. If the expiration time is specified, then each time the shadow banned user tries to send a message the API will check if the shadow ban has expired and will lift the ban.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#c4a83dfa-9e83-4eb8-b371-e105463f3a52

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val shadowBanUserResponse = withContext(Dispatchers.IO) {
 chatClient.shadowBanUser(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 // Assuming user "@nicoleWd" exists
 userid = "023976080242ac120002", // ID of an existing user "@nicoleWd" from this chatroom
 applyeffect = true, // If set to true, user will be set to banned state. Otherwise, will be set to non-banned state.
 expireseconds = 3600 // [OPTIONAL]: Duration of shadowban value in seconds. If specified, the shadow ban will be lifted when this time is reached. If not specified, shadowban remains until explicitly lifted. Maximum seconds is a double byte value.
)
 }

 // Resolve `shadowBanUserResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.shadowBanUser(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 // Assuming user "@nicoleWd" exists
 userid = "023976080242ac120002", // ID of an existing user "@nicoleWd" from this chatroom
 applyeffect = true, // If set to true, user will be set to banned state. Otherwise, will be set to non-banned state.
 expireseconds = 3600 // [OPTIONAL]: Duration of shadowban value in seconds. If specified, the shadow ban will be lifted when this time is reached. If not specified, shadowban remains until explicitly lifted. Maximum seconds is a double byte value.
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { shadowBanUserResponse ->
 // Resolve `shadowBanUserResponse` (ex. Display prompt OR Update UI)
 }

Mute User (In Room Only)

Invoke this function toggles the specified user’s mute effect.

There is a global user mute effect and local room level user mute effect.

A muted user is in a read-only state. The muted user cannot communicate. This method applies mute from within the specified Chat room ONLY. You can optionally specify an expiration time. If the expiration time is specified, then each time the muted user tries to send a message the API will check if the effect has expired and will lift the user’s mute effect.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#67d66190-eb25-4f19-9d65-c127ed368233

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val muteUserResponse = withContext(Dispatchers.IO) {
 chatClient.muteUser(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 // Assuming user "@nicoleWd" exists
 userid = "023976080242ac120002", // ID of an existing user "@nicoleWd" from this chatroom
 applyeffect = true, // If set to true, user will be set to muted state. Otherwise, will be set to non-banned state.
 expireseconds = 3600 // [OPTIONAL]: Duration of mute in seconds. If specified, the mute will be lifted when this time is reached. If not specified, mute effect remains until explicitly lifted. Maximum seconds is a double byte value.
)
 }

 // Resolve `muteUserResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.muteUser(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 // Assuming user "@nicoleWd" exists
 userid = "023976080242ac120002", // ID of an existing user "@nicoleWd" from this chatroom
 applyeffect = true, // If set to true, user will be set to muted state. Otherwise, will be set to non-banned state.
 expireseconds = 3600 // [OPTIONAL]: Duration of mute in seconds. If specified, the mute will be lifted when this time is reached. If not specified, mute effect remains until explicitly lifted. Maximum seconds is a double byte value.
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { muteUserResponse ->
 // Resolve `muteUserResponse` (ex. Display prompt OR Update UI)
 }

Bounce User

Invoke this function to remove the user from the room and prevent the user from reentering.

Optionally display a message to people in the room indicating this person was bounced.

When you bounce a user from the room, the user is removed from the room and blocked from reentering. Past events generated by that user are not modified (past messages from the user are not removed).

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#7116d7ca-a1b8-44c1-8894-bea85225e4c7

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val bounceUserResponse = withContext(Dispatchers.IO) {
 chatClient.bounceUser(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 // Assuming user "@nicoleWd" exists
 request = BounceUserRequest(
 userid = "023976080242ac120002", // ID of an existing user "@nicoleWd" from this chatroom
 bounce = true,
 announcement = "@nicoleWd has been banned."
)
)
 }

 // Resolve `bounceUserResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.bounceUser(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 // Assuming user "@nicoleWd" exists
 request = BounceUserRequest(
 userid = "023976080242ac120002", // ID of an existing user "@nicoleWd" from this chatroom
 bounce = true,
 announcement = "@nicoleWd has been banned."
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { bounceUserResponse ->
 // Resolve `bounceUserResponse` (ex. Display prompt OR Update UI)
 }

Search Event History

Invoke this function to search the message history applying the specified filters.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#a6b5380c-4e6c-4ded-b0b1-55225bcdea67

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)

 // Search using User ID
 val searchEventHistoryByUserIdResponse = withContext(Dispatchers.IO) {
 chatClient.searchEventHistory(
 request = SearchEventHistoryRequest(
 fromuserid = "023976080242ac120002", // ID of an existing user
 limit = 10,
 types = listOf(EventType.SPEECH) // Any EventType constants
)
)
 }
 // Resolve `searchEventHistoryFromUserIdResponse` from HERE onwards(ex. update UI displaying the response data)...

 // Search using User handle
 val searchEventHistoryByUserHandleResponse = withContext(Dispatchers.IO) {
 chatClient.searchEventHistory(
 request = SearchEventHistoryRequest(
 fromhandle = "@nicoleWD", // Handle of an existing user
 limit = 10,
 types = listOf(EventType.SPEECH) // Any EventType constants
)
)
 }
 // Resolve `searchEventHistoryByUserHandleResponse` from HERE onwards(ex. update UI displaying the response data)...

}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

// Search using User ID
chatClient.searchEventHistory(
 request = SearchEventHistoryRequest(
 fromuserid = "023976080242ac120002", // ID of an existing user
 limit = 10,
 types = listOf(EventType.SPEECH) // Any EventType constants
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { searchEventHistoryByUserIdResponse ->
 // Resolve `searchEventHistoryByUserIdResponse` (ex. Display prompt OR Update UI)
 }

// Search using User handle
chatClient.searchEventHistory(
 request = SearchEventHistoryRequest(
 fromhandle = "@nicoleWD", // Handle of an existing user
 limit = 10,
 types = listOf(EventType.SPEECH) // Any EventType constants
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { searchEventHistoryByUserHandleResponse ->
 // Resolve `searchEventHistoryByUserHandleResponse` (ex. Display prompt OR Update UI)
 }

Update Chat Message

Invoke this function to update the contents of an existing chat event

This API may be used to update the body of an existing Chat Event. It is used to enable the user to edit the message after it is published. This may only be used with MESSAGE event types (speech, quote, reply). When the chat event is updated another event of type “replace” will be emitted with the updated event contents, and the original event will be replaced in future calls to List Event History, Join and List Previous Events. The event will also be flagged as edited by user.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#207a7dfa-5233-4acb-b855-031928941b25

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val updateChatMessageResponse = withContext(Dispatchers.IO) {
 chatClient.updateChatMessage(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 eventId = "7620812242ac09300002", // ID of an existing event from the chat room
 request = UpdateChatMessageRequest(
 userid = "023976080242ac120002", // ID of an existing user from this chat room
 body = "[UPDATED] from the original message",
 customid = null, // [OPTIONAL]
 custompayload = null, // [OPTIONAL]
 customfield1 = null, // [OPTIONAL]
 customfield2 = null, // [OPTIONAL]
 customtags = null, // [OPTIONAL]
)
)
 }

 // Resolve `updateChatMessageResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.updateChatMessage(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 eventId = "7620812242ac09300002", // ID of an existing event from the chat room
 request = UpdateChatMessageRequest(
 userid = "023976080242ac120002", // ID of an existing user from this chat room
 body = "[UPDATED] from the original message",
 customid = null, // [OPTIONAL]
 custompayload = null, // [OPTIONAL]
 customfield1 = null, // [OPTIONAL]
 customfield2 = null, // [OPTIONAL]
 customtags = null, // [OPTIONAL]
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { updateChatMessageResponse ->
 // Resolve `updateChatMessageResponse` (ex. Display prompt OR Update UI)
 }

Flag Message Event As Deleted

Invoke this function to set a ChatEvent as logically deleted.

Everything in a chat room is an event. Each event has a type. Events of type “speech, reply, quote” are considered “messages”.

Use logical delete if you want to flag something as deleted without actually deleting the message so you still have the data. When you use this method:

	The message is not actually deleted. The comment is flagged as deleted, and can no longer be read, but replies are not deleted.

	If flag “permanentifnoreplies” is true, then it will be a permanent delete instead of logical delete for this comment if it has no children.

	If you use “permanentifnoreplies” = true, and this comment has a parent that has been logically deleted, and this is the only child, then the parent will also be permanently deleted (and so on up the hierarchy of events).

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#92632caf-9bd0-449d-91df-90fef54f6634

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val logicalDeleteResponse = withContext(Dispatchers.IO) {
 chatClient.flagEventLogicallyDeleted(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 eventId = "7620812242ac09300002", // ID of an existing event from the chat room
 userid = "023976080242ac120002", // ID of an existing user "@nicoleWd" from this chatroom
 // Assuming user "@nicoleWd" exists
 deleted = true,
 permanentifnoreplies = true
)
 }

 // Resolve `logicalDeleteResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.flagEventLogicallyDeleted(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 eventId = "7620812242ac09300002", // ID of an existing event from the chat room
 userid = "023976080242ac120002", // ID of an existing user "@nicoleWd" from this chatroom
 // Assuming user "@nicoleWd" exists
 deleted = true,
 permanentifnoreplies = true
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { logicalDeleteResponse ->
 // Resolve `logicalDeleteResponse` (ex. Display prompt OR Update UI)
 }

Delete Event

Invoke this function to delete an event from the room.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#f2894c8f-acc9-4b14-a8e9-216b28c319de

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val deleteEventResponse = withContext(Dispatchers.IO) {
 chatClient.permanentlyDeleteEvent(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 eventId = "7620812242ac09300002", // ID of an existing event from the chat room
 userid = "023976080242ac120002" // ID of an existing user "@nicoleWd" from this chatroom
 // Assuming user "@nicoleWd" exists
)
 }

 // Resolve `deleteEventResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.permanentlyDeleteEvent(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 eventId = "7620812242ac09300002", // ID of an existing event from the chat room
 userid = "023976080242ac120002" // ID of an existing user "@nicoleWd" from this chatroom
 // Assuming user "@nicoleWd" exists
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { deleteEventResponse ->
 // Resolve `deleteEventResponse` (ex. Display prompt OR Update UI)
 }

Delete All Events in Room

Invoke this function to execute a command in a chat room to delete all messages in the chatroom.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#e4d62330-469e-4e37-a42e-049b10259152

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val deleteAllEventsCmdResponse = withContext(Dispatchers.IO) {
 chatClient.executeChatCommand(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 // Assuming ADMIN password "testpassword123"
 request = ExecuteChatCommandRequest(
 command = "*deleteallevents testpassword123",
 userid = "023976080242ac120002" // ID of an existing user "@nicoleWd" from this chatroom
)
)
 }

 // Resolve `deleteAllEventsCmdResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.executeChatCommand(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 // Assuming ADMIN password "testpassword123"
 request = ExecuteChatCommandRequest(
 command = "*deleteallevents testpassword123",
 userid = "023976080242ac120002" // ID of an existing user "@nicoleWd" from this chatroom
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { deleteAllEventsCmdResponse ->
 // Resolve `deleteAllEventsCmdResponse` (ex. Display prompt OR Update UI)
 }

Update Room (Close a room)

Invoke this function to update an existing room.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#e4d62330-469e-4e37-a42e-049b10259152

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val updatedRoomResponse = withContext(Dispatchers.IO) {
 chatClient.updateRoom(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = UpdateChatRoomRequest(
 name = "Test Chat Room 1 - UPDATED",
 customid = "test-room-1-updated",
 description = "[UPDATED] This is a test chat room 1.",
 moderation = "post",
 enableactions = false,
 enableenterandexit = false,
 enableprofanityfilter = true,
 delaymessageseconds = 10L,
 roomisopen = false,
 maxreports = 30
)
)
 }

 // Resolve `updatedRoomResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.updateRoom(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 request = UpdateChatRoomRequest(
 name = "Test Chat Room 1 - UPDATED",
 customid = "test-room-1-updated",
 description = "[UPDATED] This is a test chat room 1.",
 moderation = "post",
 enableactions = false,
 enableenterandexit = false,
 enableprofanityfilter = true,
 delaymessageseconds = 10L,
 roomisopen = false,
 maxreports = 30
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { updatedRoomResponse ->
 // Resolve `updatedRoomResponse` (ex. Display prompt OR Update UI)
 }

Exit a Room

Invoke this function to exit from a chatroom where the user has currently joined.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#408b43ca-fca9-4f2d-8883-f6f725d140f2

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val exitRoomResponse = withContext(Dispatchers.IO) {
 chatClient.exitRoom(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 userid = "023976080242ac120002" // ID of an existing user from this chatroom
)
 }

 // Resolve `exitRoomResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.exitRoom(
 chatRoomId = "080001297623242ac002", // ID of an existing chat room
 userid = "023976080242ac120002" // ID of an existing user from this chatroom
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { exitRoomResponse ->
 // Resolve `exitRoomResponse` (ex. Display prompt OR Update UI)
 }

Delete Room

Invoke this function to delete the specified room and all events contained therein) by ID

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#c5ae345d-004d-478a-b543-5abaf691000d

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val deleteRoomResponse = withContext(Dispatchers.IO) {
 chatClient.deleteRoom(
 chatRoomId = "080001297623242ac002" // ID of an existing chat room
)
 }

 // Resolve `deleteRoomResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.deleteRoom(
 chatRoomId = "080001297623242ac002" // ID of an existing chat room
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { deleteRoomResponse ->
 // Resolve `deleteRoomResponse` (ex. Display prompt OR Update UI)
 }

List Messages Needing Moderation

Invoke this function to list all the messages in the moderation queue.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#bcdbda1b-e495-46c9-8fe9-c5dc6a4c1756

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val listMessagesInModeration = withContext(Dispatchers.IO) {
 chatClient.listMessagesNeedingModeration(
 roomId = "080001297623242ac002", // ID of an existing chat room
 limit = 20, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of messages from this chatroom.
)
 }

 // Resolve `listMessagesInModeration` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.listMessagesNeedingModeration(
 roomId = "080001297623242ac002", // ID of an existing chat room
 limit = 20, /* Defaults to 200 on backend API server */
 cursor = null // OPTIONAL: The cursor value from previous search attempt to indicate next paginated fetch. Null if fetching the first list of messages from this chatroom.
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { listMessagesInModeration ->
 // Resolve `listMessagesInModeration` (ex. Display prompt OR Update UI)
 }

Approve Message

Invoke this function to approve a message in the moderation queue.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#6f9bf714-5b3b-48c9-87d2-eb2e12d2bcbf

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val approveResponse = withContext(Dispatchers.IO) {
 chatClient.approveMessage(
 eventId = "0976280012ac00023242", // ID of an existing event from this chatroom, which you intend to reply to
 approve = true
)
 }

 // Resolve `approveResponse` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

chatClient.approveMessage(
 eventId = "0976280012ac00023242", // ID of an existing event from this chatroom, which you intend to reply to
 approve = true
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { approveResponse ->
 // Resolve `approveResponse` (ex. Display prompt OR Update UI)
 }

Comment Client

val commentClient = SportsTalk247.CommentClient(
 config = ClientConfig(
 appId = "c84cb9c852932a6b0411e75e", // This is just a sample app id
 apiToken = "5MGq3XbsspBEQf3kj154_OSQV-jygEKwHJyuHjuAeWHA", // This is just a sample token
 endpoint = "http://api.custom.endpoint/v3/" // This is just a sample API endpoint
)
)

Create / Update Conversation

Invoke this function if you want to create or update a conversation.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#e0a0a63c-6e68-49d4-ab5c-b6c19a173f06

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val createdConversation = withContext(Dispatchers.IO) {
 commentClient.createOrUpdateConversation(
 request = CreateOrUpdateConversationRequest(
 conversationid = "test-conversation-id123",
 property = "sportstalk247.com/apidemo",
 moderation = "post",
 enableprofanityfilter = false,
 title = "Sample Conversation",
 open = true,
 customid = "/articles/2020-03-01/article1/something-very-important-happened"
)
)
 }

 // Resolve `createdConversation` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.createOrUpdateConversation(
 request = CreateOrUpdateConversationRequest(
 conversationid = "test-conversation-id123",
 property = "sportstalk247.com/apidemo",
 moderation = "post",
 enableprofanityfilter = false,
 title = "Sample Conversation",
 open = true,
 customid = "/articles/2020-03-01/article1/something-very-important-happened"
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { createdConversation ->
 // Resolve `createdConversation` (ex. Display prompt OR Update UI)
 }

Get Conversation by ID

Invoke this function if you want to retrieve metadata about a conversation.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#b23cafdf-35ce-4edc-b073-1215595a9de0

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val conversation = withContext(Dispatchers.IO) {
 commentClient.getConversation(
 conversationid = "test-conversation-id123"
)
 }

 // Resolve `conversation` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.getConversation(
 conversationid = "test-conversation-id123"
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { conversation ->
 // Resolve `conversation` (ex. Display prompt OR Update UI)
 }

Find Conversation by CustomID

Invoke this function if you want to retrieve the conversation object by using the CustomID for the conversation supplied by the app.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#5c85f5cb-8bd0-4a9d-b78f-165bfc31a724

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val conversation = withContext(Dispatchers.IO) {
 commentClient.getConversationByCustomId(
 customid = "/articles/2020-03-01/article1/something-very-important-happened"
)
 }

 // Resolve `conversation` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.getConversationByCustomId(
 customid = "/articles/2020-03-01/article1/something-very-important-happened"
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { conversation ->
 // Resolve `conversation` (ex. Display prompt OR Update UI)
 }

List Conversations

Invoke this function if you want to Get a list of all conversations with optional filters.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#dd62cc9e-c3be-4826-831d-40783531adb4

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val conversations = withContext(Dispatchers.IO) {
 commentClient.listConversations()
 }

 // Resolve `conversations` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.listConversations()
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { conversations ->
 // Resolve `conversations` (ex. Display prompt OR Update UI)
 }

Batch Get Conversation Details

Invoke this function if you want to retrieve a list of conversations and you want metadata about only those conversations so you can display things like like count or comment count making minimal requests.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#7d249f48-de31-4647-9102-527c64fe37bb

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val batchOfConversations = withContext(Dispatchers.IO) {
 commentClient.batchGetConversationDetails(
 ids = listOf("test-conversation-id123", "test-conversation-id456", "test-conversation-id789"), // [OPTIONAL] List of conversation id(s)
 cid = listOf(
 "/articles/2020-03-01/article1/something-very-important-happened",
 "/articles/2020-03-01/article1/something-not-so-important-happened",
 "/articles/2020-03-01/article1/something-okayish-happened",
), // [OPTIONAL] List of conversation customid(s)
 entities = listOf("reactions", "likecount"), // [OPTIONAL] One of the string constants("reactions", "likecount", or "commentcount")
)
 }

 // Resolve `batchOfConversations` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.batchGetConversationDetails(
 ids = listOf("test-conversation-id123", "test-conversation-id456", "test-conversation-id789"), // [OPTIONAL] List of conversation id(s)
 cid = listOf(
 "/articles/2020-03-01/article1/something-very-important-happened",
 "/articles/2020-03-01/article1/something-not-so-important-happened",
 "/articles/2020-03-01/article1/something-okayish-happened",
), // [OPTIONAL] List of conversation customid(s)
 entities = listOf("reactions", "likecount"), // [OPTIONAL] One of the string constants("reactions", "likecount", or "commentcount")
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { batchOfConversations ->
 // Resolve `batchOfConversations` (ex. Display prompt OR Update UI)
 }

React To Conversation Topic (”Like”)

Invoke this function if you want to either react to the content itself (for example to LIKE an article/video/poll) or you can use the comment react api to react to an individual comment

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#e25d90d0-9a4b-4a45-839f-0242f960c6b3

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val reactComment = withContext(Dispatchers.IO) {
 commentClient.reactToConversationTopic(
 conversationid = "test-conversation-id123",
 request = ReactToConversationTopicRequest(
 userid = "test-user-id123", // ID of the User who is attempting to react on the comment
 reaction = ReactionType.LIKE, // Any arbitratry reaction string constant(i.e. "like", etc.)
 reacted = true,
)
)
 }

 // Resolve `reactComment` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.reactToConversationTopic(
 conversationid = "test-conversation-id123",
 request = ReactToConversationTopicRequest(
 userid = "test-user-id123", // ID of the User who is attempting to react on the comment
 reaction = ReactionType.LIKE, // Any arbitratry reaction string constant(i.e. "like", etc.)
 reacted = true,
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { reactComment ->
 // Resolve `reactComment` (ex. Display prompt OR Update UI)
 }

Create and Publish Comment

Invoke this function if you want to create a comment and publishes it. You can optionally make this comment into a reply by passing in the optional replyto field. Custom fields can be set, and can be overwritten.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#1a6e6c69-c904-458e-ac87-c215091db098

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val createdComment = withContext(Dispatchers.IO) {
 commentClient.createComment(
 conversationid = "test-conversation-id123",
 request = CreateCommentRequest(
 userid = "test-user-id123", // ID of the User who is attempting to create the comment
 displayname = "HelloUser1", // [OPTIONAL] Override display name of the User who is attempting to create the comment
 body = "Hello, this is my comment!",
 customtype = null, // [OPTIONAL]
 customfield1 = null, // [OPTIONAL]
 customfield2 = null, // [OPTIONAL]
 custompayload = "{ num: 0 }", // [OPTIONAL]
)
)
 }

 // Resolve `createdComment` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.createComment(
 conversationid = "test-conversation-id123",
 request = CreateCommentRequest(
 userid = "test-user-id123", // ID of the User who is attempting to create the comment
 displayname = "HelloUser1", // [OPTIONAL] Override display name of the User who is attempting to create the comment
 body = "Hello, this is my comment!",
 customtype = null, // [OPTIONAL]
 customfield1 = null, // [OPTIONAL]
 customfield2 = null, // [OPTIONAL]
 custompayload = "{ num: 0 }", // [OPTIONAL]
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { createdComment ->
 // Resolve `createdComment` (ex. Display prompt OR Update UI)
 }

Reply to Comment

Invoke this function if you want to reply to a specific comment. The reply to comment method is the same as the create comment method, except you pass in the ID of the parent comment using the replyto field.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#c0ccaa52-ac7c-4424-8f27-58cc58812001

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val commentReply = withContext(Dispatchers.IO) {
 commentClient.replyToComment(
 conversationid = "test-conversation-id123",
 replyto = "test-comment-id123", // ID of the comment you are about to reply to
 request = CreateCommentRequest(
 userid = "test-user-id123", // ID of the User who is attempting to create the comment
 displayname = "HelloUser1", // [OPTIONAL] Override display name of the User who is attempting to create the comment
 body = "Hello, this is my comment!",
 customtype = null, // [OPTIONAL]
 customfield1 = null, // [OPTIONAL]
 customfield2 = null, // [OPTIONAL]
 custompayload = "{ num: 0 }", // [OPTIONAL]
)
)
 }

 // Resolve `commentReply` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.replyToComment(
 conversationid = "test-conversation-id123",
 replyto = "test-comment-id123", // ID of the comment you are about to reply to
 request = CreateCommentRequest(
 userid = "test-user-id123", // ID of the User who is attempting to create the comment
 displayname = "HelloUser1", // [OPTIONAL] Override display name of the User who is attempting to create the comment
 body = "Hello, this is my comment!",
 customtype = null, // [OPTIONAL]
 customfield1 = null, // [OPTIONAL]
 customfield2 = null, // [OPTIONAL]
 custompayload = "{ num: 0 }", // [OPTIONAL]
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { commentReply ->
 // Resolve `commentReply` (ex. Display prompt OR Update UI)
 }

List Replies

Invoke this function if you want to retrieve a list of replies from a specific comment. This method works the same way as the List Comments method, so view the documentation on that method.
The difference is that this method will filter to only include comments that have a parent.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#71e7a205-471a-4554-9897-da45a8b671ee

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val commentReplies = withContext(Dispatchers.IO) {
 commentClient.listReplies(
 conversationid = "test-conversation-id123",
 commentid = "test-comment-id123", // ID of the parent comment
 cursor = null, // OPTIONAL
 limit = null, // OPTIONAL
 direction = null, // OPTIONAL, defaults to "forward", Must be "forward" or "backward"
 sort = null, // OPTIONAL, defaults to "oldest", Either "oldest", "newest", "likes", "votescore", "mostreplies"
 includechildren = true, // (optional, default is false) If false, this returns all reply nodes that are immediate children of the provided parent id. If true, it includes all replies under the parent id and all the children of those replies and so on.
 includeinactive = true, // (optional, default is false) If true, return comments that are inactive (for example, disabled by moderation)
)
 }

 // Resolve `commentReplies` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.listReplies(
 conversationid = "test-conversation-id123",
 commentid = "test-comment-id123", // ID of the parent comment
 cursor = null, // OPTIONAL
 limit = null, // OPTIONAL
 direction = null, // OPTIONAL, defaults to "forward", Must be "forward" or "backward"
 sort = null, // OPTIONAL, defaults to "oldest", Either "oldest", "newest", "likes", "votescore", "mostreplies"
 includechildren = true, // (optional, default is false) If false, this returns all reply nodes that are immediate children of the provided parent id. If true, it includes all replies under the parent id and all the children of those replies and so on.
 includeinactive = true, // (optional, default is false) If true, return comments that are inactive (for example, disabled by moderation)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { commentReplies ->
 // Resolve `commentReplies` (ex. Display prompt OR Update UI)
 }

Get Comment by ID

Invoke this function if you want to retrieve a specific comment.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#b7c10a98-f5cd-4ed5-8fcc-aa3440cd4233

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val comment = withContext(Dispatchers.IO) {
 commentClient.getComment(
 commentid = "test-comment-id123",
)
 }

 // Resolve `comment` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.getComment(
 commentid = "test-comment-id123",
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { comment ->
 // Resolve `comment` (ex. Display prompt OR Update UI)
 }

List Comments

Invoke this function if you want to Get a list of comments within a conversation.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#98744685-35c9-4293-a082-594cb7a6ec76

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val comments = withContext(Dispatchers.IO) {
 commentClient.listComments(
 conversationid = "test-conversation-id123",
 cursor = null, // OPTIONAL
 limit = null, // OPTIONAL
 direction = null, // OPTIONAL, defaults to "forward", Must be "forward" or "backward"
 sort = null, // OPTIONAL, defaults to "oldest", Either "oldest", "newest", "likes", "votescore", "mostreplies"
 includechildren = true, // (optional, default is false) If false, this returns all reply nodes that are immediate children of the provided parent id. If true, it includes all replies under the parent id and all the children of those replies and so on.
 includeinactive = true, // (optional, default is false) If true, return comments that are inactive (for example, disabled by moderation)
)
 }

 // Resolve `comments` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.listComments(
 conversationid = "test-conversation-id123",
 cursor = null, // OPTIONAL
 limit = null, // OPTIONAL
 direction = null, // OPTIONAL, defaults to "forward", Must be "forward" or "backward"
 sort = null, // OPTIONAL, defaults to "oldest", Either "oldest", "newest", "likes", "votescore", "mostreplies"
 includechildren = true, // (optional, default is false) If false, this returns all reply nodes that are immediate children of the provided parent id. If true, it includes all replies under the parent id and all the children of those replies and so on.
 includeinactive = true, // (optional, default is false) If true, return comments that are inactive (for example, disabled by moderation)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { comments ->
 // Resolve `comments` (ex. Display prompt OR Update UI)
 }

List Replies Batch

Invoke this function if you want to get a list of replies to multiple parent comments quickly, in 1 request.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#b2d397cf-5d25-4752-b96e-71374b4799bb

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val batchCommentReplies = withContext(Dispatchers.IO) {
 commentClient.listRepliesBatch(
 conversationid = "test-conversation-id123",
 cursor = null, // OPTIONAL
 childlimit = 50, // (Optional, default = 50).
 parentids = listOf("test-comment-id123", "test-comment-id456"), // (Required). A list of parent comment ID(s) to which comment replies will be fetched from.
 includeinactive = true, // (optional, default is false) If true, return comments that are inactive (for example, disabled by moderation)
)
 }

 // Resolve `batchCommentReplies` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.listRepliesBatch(
 conversationid = "test-conversation-id123",
 cursor = null, // OPTIONAL
 childlimit = 50, // (Optional, default = 50).
 parentids = listOf("test-comment-id123", "test-comment-id456"), // (Required). A list of parent comment ID(s) to which comment replies will be fetched from.
 includeinactive = true, // (optional, default is false) If true, return comments that are inactive (for example, disabled by moderation)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { batchCommentReplies ->
 // Resolve `batchCommentReplies` (ex. Display prompt OR Update UI)
 }

React To Comment (”Like”)

Invoke this function if you want to add or remove a reaction to a comment.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#df659fc4-0bb8-4d93-845d-c61579a1f0f8

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val reactedComment = withContext(Dispatchers.IO) {
 commentClient.reactToComment(
 conversationid = "test-conversation-id123",
 commentid = "test-comment-id123"
 request = ReactToCommentRequest(
 userid = "test-user-id123", // ID of the User who is attempting to react on the comment
 reaction = ReactionType.LIKE, // Any arbitratry reaction string constant(i.e. "like", etc.)
 reacted = true,
)
)
 }

 // Resolve `reactedComment` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.reactToComment(
 conversationid = "test-conversation-id123",
 commentid = "test-comment-id123"
 request = ReactToCommentRequest(
 userid = "test-user-id123", // ID of the User who is attempting to react on the comment
 reaction = ReactionType.LIKE, // Any arbitratry reaction string constant(i.e. "like", etc.)
 reacted = true,
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { reactedComment ->
 // Resolve `reactedComment` (ex. Display prompt OR Update UI)
 }

Vote on Comment

Invoke this function if you want to UPVOTE, DOWNVOTE, or REMOVE VOTE from a comment.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#82ffbc3a-01fe-4f1d-a7b1-62440179dfa5

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val votedComment = withContext(Dispatchers.IO) {
 commentClient.voteOnComment(
 conversationid = "test-conversation-id123",
 commentid = "test-comment-id123"
 request = VoteOnCommentRequest(
 vote = VoteType.Up,
 userid = "test-user-id123", // ID of the User who is attempting to vote on the comment
)
)
 }

 // Resolve `votedComment` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.voteOnComment(
 conversationid = "test-conversation-id123",
 commentid = "test-comment-id123"
 request = VoteOnCommentRequest(
 vote = VoteType.Up,
 userid = "test-user-id123", // ID of the User who is attempting to vote on the comment
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { votedComment ->
 // Resolve `votedComment` (ex. Display prompt OR Update UI)
 }

Report Comment

Invoke this function if you want to REPORT a comment to the moderation team.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#8b48a6e4-8fda-4a3d-b172-f4db50fb0a40

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val reportedComment = withContext(Dispatchers.IO) {
 commentClient.reportComment(
 conversationid = "test-conversation-id123",
 commentid = "test-comment-id123"
 request = ReportCommentRequest(
 userid = "test-user-id123", // ID of the User who is attempting to report the comment
 reporttype = ReportType.ABUSE,
)
)
 }

 // Resolve `reportedComment` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.reportComment(
 conversationid = "test-conversation-id123",
 commentid = "test-comment-id123"
 request = ReportCommentRequest(
 userid = "test-user-id123", // ID of the User who is attempting to report the comment
 reporttype = ReportType.ABUSE,
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { reportedComment ->
 // Resolve `reportedComment` (ex. Display prompt OR Update UI)
 }

Update Comment

Invoke this function if you want to UPDATE the contents of an existing comment.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#b02ee426-5a84-4203-93b4-989ad43fe227

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val updatedComment = withContext(Dispatchers.IO) {
 commentClient.updateComment(
 conversationid = "test-conversation-id123",
 commentid = "test-comment-id123"
 request = UpdateCommentRequest(
 userid = "test-user-id123", // ID of the User who is attempting to update the comment
 body = "Hello UPDATED comment!",
)
)
 }

 // Resolve `updatedComment` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.updateComment(
 conversationid = "test-conversation-id123",
 commentid = "test-comment-id123"
 request = UpdateCommentRequest(
 userid = "test-user-id123", // ID of the User who is attempting to update the comment
 body = "Hello UPDATED comment!",
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { updatedComment ->
 // Resolve `updatedComment` (ex. Display prompt OR Update UI)
 }

Flag Comment As Deleted

Invoke this function if you want to logically delete comment(body becomes “(comment deleted)” and deleted = true).

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#5e14e5ea-e8b6-46e0-9cb8-263f695ea652

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val logicallyDeletedComment = withContext(Dispatchers.IO) {
 commentClient.flagCommentLogicallyDeleted(
 conversationid = "test-conversation-id123",
 commentid = "test-comment-id123"
 userid = "test-user-id123", // ID of the User who is attempting to logically delete the comment
 deleted = true,
 permanentifnoreplies = false, // If not provided, defaults to false.
)
 }

 // Resolve `logicallyDeletedComment` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.flagCommentLogicallyDeleted(
 conversationid = "test-conversation-id123",
 commentid = "test-comment-id123"
 userid = "test-user-id123", // ID of the User who is attempting to logically delete the comment
 deleted = true,
 permanentifnoreplies = false, // If not provided, defaults to false.
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { logicallyDeletedComment ->
 // Resolve `logicallyDeletedComment` (ex. Display prompt OR Update UI)
 }

Delete Comment (permanent)

Invoke this function if you want to DELETE a comment and all replies to that comment.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#2b353c85-c5b7-4065-a14d-3960976f91a6

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val deletedComment = withContext(Dispatchers.IO) {
 commentClient.permanentlyDeleteComment(
 conversationid = "test-conversation-id123",
 commentid = "test-comment-id123",
)
 }

 // Resolve `deletedComment` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.permanentlyDeleteComment(
 conversationid = "test-conversation-id123",
 commentid = "test-comment-id123",
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { deletedComment ->
 // Resolve `deletedComment` (ex. Display prompt OR Update UI)
 }

List Comments in Moderation Queue

Invoke this function if you want to list all the comments in the moderation queue.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#d98100c4-6be8-415c-9c08-f6bcbc039566

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val commentsInModerationQueue = withContext(Dispatchers.IO) {
 commentClient.listCommentsInModerationQueue(
 conversationid = "test-conversation-id123", // OPTIONAL, limit to comments under specified conversation ID
 limit = null, // OPTIONAL
 cursor = null, // OPTIONAL
 filterHandle = null, // OPTIONAL
 filterKeyword = null, // OPTIONAL
 filterModerationState = CommentFilterModerationState.Approved, // OPTIONAL
)
 }

 // Resolve `commentsInModerationQueue` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.listCommentsInModerationQueue(
 conversationid = "test-conversation-id123", // OPTIONAL, limit to comments under specified conversation ID
 limit = null, // OPTIONAL
 cursor = null, // OPTIONAL
 filterHandle = null, // OPTIONAL
 filterKeyword = null, // OPTIONAL
 filterModerationState = CommentFilterModerationState.Approved, // OPTIONAL
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { commentsInModerationQueue ->
 // Resolve `commentsInModerationQueue` (ex. Display prompt OR Update UI)
 }

Approve Message in Queue

Invoke this function if you want to APPROVE/REJECT a message in the moderation queue.

Refer to the SportsTalk API Documentation for more details:

https://apiref.sportstalk247.com/?version=latest#71eb7668-f9d1-4ecf-9e07-1f64699ff071

Below is a code sample on how to use this SDK feature:

sdk-coroutine

// Launch thru coroutine block
// https://developer.android.com/topic/libraries/architecture/coroutines
lifecycleScope.launch {
 // Switch to IO Coroutine Context(Operation will be executed on IO Thread)
 val approvedComment = withContext(Dispatchers.IO) {
 commentClient.approveMessageInQueue(
 commentid = "test-comment-id123",
 request = ApproveMessageRequest(
 approve = true // Set true to APPROVE. Otherwise, false to REJECT.
)
)
 }

 // Resolve `approvedComment` from HERE onwards(ex. update UI displaying the response data)...
}

sdk-reactive-rx2

val rxDisposeBag = CompositeDisposable()

commentClient.approveMessageInQueue(
 commentid = "test-comment-id123",
 request = ApproveMessageRequest(
 approve = true // Set true to APPROVE. Otherwise, false to REJECT.
)
)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .doOnSubscribe { rxDisposeBag.add(it) }
 .subscribe { approvedComment ->
 // Resolve `approvedComment` (ex. Display prompt OR Update UI)
 }

Index

 nav.xhtml

 Table of Contents

 		
 SportsTalk 24/7 Android SDK Documentation

 		
 Getting Started

 		
 Implementing the SDK

 		
 How to get API Key and Token

 		
 Authentication

 		
 Apply Custom JWT

 		
 SDK flow for Chat Applications

 		
 How to download the SDK

 		
 Download from Repository

 		
 How to use SportsTalk SDK

 		
 Instantiate SportsTalkManager Clients

 		
 Using the SDK

 		
 Implement Custom JWT

 		
 Handling SDK Exception

 		
 User Client

 		
 Create or Update User

 		
 Get User Details

 		
 List Users

 		
 Ban User

 		
 Globally Purge User Content

 		
 Mute User

 		
 Set Shadow Ban Status

 		
 Search User(s)

 		
 Delete User

 		
 Report User

 		
 List User Notifications

 		
 Set User Notification as Read

 		
 Set User Notification as Read by Chat Event

 		
 Delete User Notification

 		
 Delete User Notification by Chat Event

 		
 Mark All User Notifications as Read

 		
 Chat Client

 		
 Room Subscriptions

 		
 Get Chat Room Event Update Cursor

 		
 Set Chat Room Event Update Cursor

 		
 Clear Chat Room Event Update Cursor

 		
 Create Room

 		
 Get Room Details

 		
 Get Room Extended Details Batch

 		
 Get Room Details By CustomId

 		
 List Rooms

 		
 Join Room (Authenticated User)

 		
 Join Room By CustomID

 		
 List Room Participants

 		
 List User Subscribed Rooms

 		
 Update Room

 		
 Execute Chat Command (say ‘Hello, World!’)

 		
 SENDING A MESSAGE

 		
 ACTION COMMANDS

 		
 ADMIN COMMANDS

 		
 Execute Chat Command (Announcement by Admin)

 		
 Execute Dance Action

 		
 Reply to a Message (Threaded)

 		
 Quote a Message

 		
 React To A Message (”Like”)

 		
 Report Message

 		
 Execute Admin Command (*help)

 		
 Get Updates

 		
 List Messages By User

 		
 List Event History

 		
 List Events By Type

 		
 List Events By Timestamp

 		
 Message is Reported

 		
 Message is Reacted To

 		
 List Previous Events

 		
 Get Event by ID

 		
 Report User In Room

 		
 Purge User Messages

 		
 Shadow Ban User (In Room Only)

 		
 Mute User (In Room Only)

 		
 Bounce User

 		
 Search Event History

 		
 Update Chat Message

 		
 Flag Message Event As Deleted

 		
 Delete Event

 		
 Delete All Events in Room

 		
 Update Room (Close a room)

 		
 Exit a Room

 		
 Delete Room

 		
 List Messages Needing Moderation

 		
 Approve Message

 		
 Comment Client

 		
 Create / Update Conversation

 		
 Get Conversation by ID

 		
 Find Conversation by CustomID

 		
 List Conversations

 		
 Batch Get Conversation Details

 		
 React To Conversation Topic (”Like”)

 		
 Create and Publish Comment

 		
 Reply to Comment

 		
 List Replies

 		
 Get Comment by ID

 		
 List Comments

 		
 List Replies Batch

 		
 React To Comment (”Like”)

 		
 Vote on Comment

 		
 Report Comment

 		
 Update Comment

 		
 Flag Comment As Deleted

 		
 Delete Comment (permanent)

 		
 List Comments in Moderation Queue

 		
 Approve Message in Queue

_static/plus.png

_static/file.png

_static/minus.png

